Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
11_02_Samokontrol_1.docx
Скачиваний:
15
Добавлен:
12.03.2022
Размер:
1.12 Mб
Скачать

Занятие 1 бактериологическая лаборатория. Морфология бактерий. Микроскопический метод исследования

  1. Назовите самостоятельные научные дисциплины в микробиологии; основные разделы медицинской микробиологии, основные задачи медицинской микробиологии, вирусологии и иммунологии, основные методы, применяемые в медицинской микробиологии.

Основные разделы микробиологии: общая, техническая, сельскохозяйственная, ветеринарная, медицинская, санитарная.

Задачи медицинской микробиологии: 1. Изучение биологии патогенных (болезнетворных) и нормальных для человека микробов.

2. Изучение роли микробов в возникновении, развитии инфекционных (заразных) болезней и формировании иммунного ответа макроорганизма ("хозяина").

3. Разработка методов микробиологической диагностики (распознавания), специфического лечения и профилактики (предупреждения) инфекционных болезней человека.

Задачи вирусологии: В задачи входит изучение морфологии и химического состава, принципов систематики и номенклатуры вирусов, особенностей их репродукции и изменчивости, патогенеза и иммуногенеза при вирусных болезнях, а также методических приемов диагностики и специфической профилактики наиболее распространенных и экономически значимых болезней животных, вызываемых вирусами.

Задачи иммунологии: 1. Изучение иммунной системы здорового человека;

2. Разработка унифицированных и информативных методов оценки иммунного статуса

3. Разработка новых высокоэффективных иммуноактивных препаратов и оптимальных схем их применения

Основные МЕТОДЫ микробиологии: 1. микроскопический (фазово-контрастная, темнопольная, люминисцентная, электронная, окраска по Романовскому-Гимзе) — с использованием приборов для микроскопии. Определяет форму, размеры, взаиморасположение микроорганизмов, их структуру, способность окрашиваться определенными красителями.

2. микробиологический (бактериологический, микологический, вирусологический) — выделение чистой культуры и ее идентификация.

3. серологический (сыворотка)

4. аллергологический

5. биологический — заражение лабораторных животных с воспроизведением инфекционного процесса на чувствительных моделях (биопроба).

6. хемотоксонамический

7. молекулярно-биологический ( ПЦР, ЛЦР, саузернблоттинг и нозенблоттинг, ДНК-ДНК-гибридизация, риботипирование, рестрикционный анализ).

  1. Назовите отличительные признаки микроорганизмов как представителей царства прокариот. Какие размеры имеют бактерии? Какие различают основные формы бактерий? Как называются кокки, расположенные попарно, цепочкой, гроздьями? По четыре? Пакетами?

Прокариоты – это одноклеточные бактерии, в которых нет четко оформленного ядра клетки, ограниченного ядерной оболочкой, и дополнительных мембранных органоидов. Вместо этого прокариоты используют структуру, состоящую из кольцевой ДНК, белков и РНК.Прокариоты лишены ядра, ядерной мембраны, митохондрий, ЭПС, вакуолей, лизосом, комплекса Гольджи. Их признаком является клеточная стенка, состоящая из сложного гетерополимерного вещества.

Размеры бактерий в среднем составляют в среднем составляют 0,5—5 мкм.

Различают 4 основные формы бактерий: шаровидные или кокковидные; палочковидные (цилиндрические); извитые (спиралевидные); нитевидные. Кроме того, существуют бактерии, имеющие треугольную, звездообразную, тарелкообразную форму. Обнаружены так называемые квадратные бактерии, которые образуют скопления из 8 или 16 клеток в виде пласта.

Рис. Формы одноклеточных бактерий: 1- микрококки; 2 – диплококки; 3 – стрептококки; 4 – стафилококки; 5 – сарцины; 6 – палочковидные бактерии; 7 – спириллы; 8 – вибрионы (Шлегель Г., 1987).

Микрококки (от лат.мicros - малый). Клетки делятся в одной плоскости и чаще всего сразу же отделяются от материнской. Располагаются по одиночке, беспорядочно.

Диплококки (от лат. diplos - двойной). Деление происходит в одной плоскости с образованием пар клеток, имеющих либо бобовидную, либо ланцетовидную форму. Расположены попарно.

Стрептококки (от лат. streptos - цепочка). Деление клеток происходит в одной плоскости, но размножающиеся клетки сохраняют между собой связь и образуют различной длины цепочки, напоминающие нити бус.

Стафилококки (от лат. staphyle – гроздь винограда). Клетки делятся в нескольких плоскостях, а образующиеся клетки располагаются скоплениями, напоминающими гроздья винограда.

Тетракокки (от лат. tetra - четыре). Деление происходит в двух взаимно перпендикулярных плоскостях с образованием тетрад( по четыре).

Сарцины (от лат. sarcina – связка, тюк). Деление происходит в трех взаимно перпендикулярных плоскостях с образованием пакетов (тюков) из 8, 16, 32 и большего числа особей.

  1. Как называются палочки, образующие споры? Как называются извитые формы бактерий? Каким будет общее увеличение микроскопа: 1) окуляр х7, объектив х8; 2) окуляр х7, объектив х40; 3) окуляр х7, объектив х90? Каков предел разрешающей способности микроскопа с иммерсионным объективом?

Термином «бактерия» обозначают в широком смысле всех представителей царства прокариотов, а в узком — палочковидные споронеобразующие бактерииСпорообразующие палочковидные бактерии подразделяют на бациллы [от лат. bacillus, палочка] и клостридии [от греч. kloster, веретено]. Это разделение было основано на способности центрально расположенных спор клостридии деформировать материнскую клетку, придавая им форму веретена. Позднее были открыты виды клостридии, споры которых располагаются на концах клетки, но это название закрепилось за отдельным видом. Споры бацилл не деформируют клетки.

И звитые бактерии подразделяют на две основные группы: вибрионы и спирохеты. У вибрионов и сходных по форме бактерий изогнутость тела не превышает четверти оборота спирали (например, у кампилобактер). Спирохеты имеют изгибы, равные одному или нескольким оборотам спирали (например, возбудитель сифилиса).

Увеличение микроскопа:

  1. Окуляр x7, объектив x8 = 7 умножаем на 8 и получаем 56

  2. Окуляр x7, объектив x40 = 280

  3. Окуляр x7, объектив x90 = 630

Качество изображения определяется разрешающей способностью микроскопа, т.е. минимальным расстоянием, на котором оптика микроскопа может различить раздельно две близко расположенные точки. разрешающая способность зависит от числовой апертуры объектива, конденсора и длины волны света, которым освещается препарат. Числовая апертура (раскрытие) зависит от угловой апертуры и показателя преломления среды, находящейся между фронтальной линзой объектива и конденсора и препаратом.

Угловая апертура объектива - это максимальный угол, под которым могут попадать в объектив лучи, прошедшие через препарат. Числовая апертура объектива равна произведению синуса половины угловой апертуры на показатель преломления среды, находящейся между предметным стеклом и фронтальной линзой объектива. N.A. =n•sinαгде,N.A. - числовая апертура;n- показатель преломления среды между препаратом и объективом;sinα- синус углаαравного половине угла АОВ на схеме.

Таким образом, апертура сухих систем (между фронтальной линзой объектива и препаратом-воздух) не может быть более 1 (обычно не более 0,95). Среда, помещаемая между препаратом и объективом, называется иммерсионной жидкостью или иммерсией, а объектив, рассчитанный для работы с иммерсионной жидкостью, называют иммерсионным. Благодаря иммерсии с более высоким показателем преломления чем у воздуха, можно повысить числовую апертуру объектива и, следовательно, разрешающую способность.

Для увеличения разрешающей способности микроскопа можно использовать иммерсионные жидкости, которые заполняют пространство между рассматриваемым предметом и объективом микроскопа. Благодаря этому числовая апертура объектива микроскопа может быть доведена до 1,45, а предельное разрешаемое расстояние при λ = 0,56 мкм - до d = 0,17 мкм.

Разрешающая способность микроскопа может быть повышена за счет использования иммерсии и уменьшения длины волны света. Повышение разрешающей способности при использовании иммерсии можно пояснить следующим образом. Если между объективом и объектом находится воздух (сухой объектив), то световой луч при переходе из покровного стекла в воздух, среду с меньшим показателем преломления, значительно изменяет свое направление в результате преломления, поэтому меньше лучей попадает в объектив. При использовании иммерсионной среды, показатель преломления которой приблизительно равен показателю преломления стекла, изменение хода лучей в среде не наблюдается и большее количество лучей попадает в объектив.

В качестве иммерсионной жидкости берут воду (n=1,33), кедровое масло (n=1,515) и др. Если максимальный апертурный угол у современных объективов достигает 1400 , то для сухого объектива А=0,94, а для объектива с масляной иммерсией А=1,43. Если при расчете использовать длину волны света l = 555 нм, к которой наиболее чувствителен глаз, то предел разрешения сухого объектива составит 0,30 мкм, а с масляной иммерсией - 0,19 мкм. Значение числовой апертуры указывается на оправе объектива: 0,20; 0,40; 0,65 и др.

Повышение разрешающей способности оптического микроскопа за счет уменьшения длины волны света достигается при использовании ультрафиолетового излучения. Для этого имеются специальные ультрафиолетовые микроскопы с кварцевой оптикой и приспособлениями для наблюдения и фотографирования объектов. Так как в этих микроскопах используется свет с длиной волны примерно в два раза меньше, чем у видимого света, то они способны разрешать структуры препарата размерами около 0,1мкм. Ультрафиолетовая микроскопия имеет еще одно преимущество - с ее помощью можно исследовать неокрашенные препараты. Большинство биологических объектов прозрачны в видимом свете, так как не поглощают его. Однако они обладают избирательным поглощением в ультрафиолетовой области и, следовательно, легко различимы в ультрафиолетовых лучах.

Наибольшая разрешающая способность у электронного микроскопа, так как длина волны при движении электрона в 1000 раз меньше длины световой волны.

  1. Какова роль иммерсионного масла? Каким свойством должно обладать иммерсионное масло для микроскопии? Нужно ли применять иммерсионное масло при микроскопии с объективом: х8, х40, х90? Этапы приготовления препарата–мазка.

1 . В разных средах свет преломляется по-разному, через воздух и через стекло лучи проходят под разными углами. Показатель преломления воздуха – 1.0, стекла – 1.5, и здесь кроется основная проблема. Иммерсионное масло помогает уменьшить преломление лучей света, проходящих через препарат, поскольку оно имеет показатель преломления такой же как и у стекла. Как результат, образуется однородная среда в пространстве между объективом и слайдом, тем самым достигается условие того, что большая часть пройденного через препарат света попадает в объектив микроскопа, обеспечивая формирование более четкого изображения.Масло с низкой вязкостью применяется к воздушному пространству между слайдом и объективом, высокая вязкость масла чаще применяется совместно с конденсорами.

2. Важными потребительскими свойствами иммерсионного масла являются его вязкость, запах и отсутствие механических включений.

3. Иммерсионное масло используется для иммерсионных объективов (х90 и х100) для создания дополнительной иммерсионной жидкой линзы между фиксированным прокрашенным мазком и объективом.

4. Этапы приготовления мазков-препаратов.

Приготовление состоит из нескольких последовательных операций: подготовка мазка, высушивание, фиксация и окраска. Исследуемый материал наносят на чистое обезжиренное предметное стекло. Для взятия бактериальной культуры:

- нагревают до покраснения бактериальную петлю в пламени горелки;

- берут пробирку с исследуемой культурой в левую руку так, чтобы видеть поверхность среды; вращательным движением вынимают пробку из пробирки, прижимая ее мизинцем и безымянным пальцами правой руки к ладони;

- обжигают край пробирки, осторожно вводят петлю и берут исследуемый материал;

- вынимают петлю, обжигают край пробирки и закрывают пробкой.

- взятый материал осторожно распределяют по предметному стеклу тонким слоем, после чего бактериальную петлю стерилизуют в пламени спиртовки;

- если препарат готовят из бактериальной культуры, выращенной на плотной среде, то на предметное стекло предварительно наносят каплю стерильного физиологического раствора

- мазки высушивают на воздухе при комнатной температуре или в токе теплого воздуха, держа предметное стекло высоко над пламенем горелки. Нельзя допускать закипания материала, т.к. при этом может нарушиться структура микроорганизмов.

- фиксация препарата: высушенные мазки подвергают термической (предметное стекло (мазком вверх) проводят несколько раз через пламя горелки) или химической (фиксирующие растворы: формалин, спирты, глутаральдегид, жидкость Карнау, ацетон, пары осмиевой кислоты) обработке, в результате которой бактерии погибают и плотно прикрепляются к поверхности стекла.

  1. Для чего фиксируют мазки? Способы фиксации. Что такое простой способ окраски? Назовите красители, применяемые для простых способов окраски и их цвет. Тёмнопольная микроскопия - на каком физическом принципе основана?

Фиксация необходима для инактивации бактерий и прикрепления (фиксации) их к стеклу, предотвращения аутолизиса клеток и улучшения восприятия красителя.

Существует несколько методов фиксации мазка. Наиболее простой - фиксация над пламенем горелки.

Другим распространенным методом фиксации является обработка препарата 96%-м спиртом или другими веществами.

Простой метод окраски. Является одноэтапным и заключается в окраске микропрепарата одним красителем. Используют основные анилиновые красители, такие как, фуксин, генцианвиолет, метиленовый синий в виде водных растворов или пропитанных красителем фильтровальных бумажек, которые помещают на мазок и смачивают водой. Продолжительность окраски составляет 3-5 минут, после чего микропрепарат промывают водой, высушивают и микроскопируют. В препаратах, окрашенных простым методом, можно получить представление о форме, расположении и размерах микробных клеток.

Существуют простые и сложные способы окрашивания микробов. При простой окраске, к-рая позволяет быстро изучить морфол. особенности микробов, обычно используют только один краситель, чаще всего красного цвета - фуксин (окраска производится в течение 1-2 мин) или синего цвета - метиленовый синий (время обработки мазка краской 3-5 мин), генцианвиолет - темно-фиолетового цвета.

Темнопольная микроскопия основана на способности микроорганизмов сильно рассеивать свет. Для темнопольнои микроскопии пользуются обычными объективами и специальными темнопольными конденсорами.

Принцип действия

В оптической микроскопии тёмного поля неоднородности образца рассеивают свет, и этот рассеянный свет формирует изображение исследуемого образца.

Соседние файлы в предмете Микробиология