Econometrics
.pdf
попередній аналіз даних;
вибір найбільш ефективної моделі — кривої зростання;
чисельне оцінювання параметрів моделі;
визначення адекватності моделі;
оцінювання точності моделі;
розрахунок точкового й інтервального прогнозів;
верифікація прогнозу.
22. Прогноз за трендовими моделями містить дві складові: точковий і інтервальний.
Точковий прогноз визначається окремим показником прогнозованого процесу, коли в рівняння його трендової моделі підставлено значення часу t, котре відповідає періоду упередження t=n+1, n+2,...,n+L.
23. Період упередження (або прогнозований період) визначає період часу від моменту, для якого є останні статистичні дані про об’єкт, до моменту його прогнозованого значення.
24.Інтервальний прогноз розраховується визначенням довірчого інтервалу — такого інтервалу, де з певною ймовірністю можна очікувати появу фактичного значення прогнозувального економічного показника.
25.Стандартна середня квадратична похибка Sŷ оцінки прогнозованого показника визначається за формулою:
Sy€ |
yt |
€ |
2 |
, |
yt |
||||
|
n m |
|
|
|
де yt — фактичні значення рівнів часового ряду для періоду t; ŷt— розрахункові значення відповідного показника за кривою зростання; n — кількість рівнів ряду; m — кількість параметрів моделі.
26. У випадку прямолінійного тренду, розраховуючи інтервал регресіїдовіри U: y, часто використовують формулу, аналогічну для парної
U |
y |
y€ |
t |
|
S |
y€ |
1 |
1 |
3 n 2L 1 2 |
, |
|
||||||||||
|
n L |
|
|
|
n |
n n2 1 |
|
|||
|
|
|
|
|
|
|
|
|
де L — період упередження; ŷn + L — точковий прогноз за моделлю на (n+L)-й період часу; Sŷ — стандартна похибка, коли m=2; tα — табличне значення критерію Стьюдента для рівня значущості α.
48
27. Іноді для розрахунку довірчих інтервалів прогнозу відносно лінійного тренду застосовують іншу формулу:
|
|
|
€ |
|
|
|
|
|
1 |
tL t |
2 |
, |
|
|
|
|
|
|
|
|
|
|
|||||
U |
|
|
y |
|
|
|
t S € |
1 |
|
|
|
|
|
|
y |
|
n |
|
L |
|
y |
|
n |
t t 2 |
|
||
де t — порядковий номер рівня ряду (t=1,2,…n); сумування ведеться за всіма спостереженнями; tL відповідає n+L-му періоду часу, для якого робиться прогноз; t — час, що відповідає сере- дині періоду спостережень для вихідного ряду, наприклад, t =(n+1):2.
Цю формулу можна дещо спростити, якщо перенести початок розрахунку часу на середину періоду спостережень ( t =0).
Тоді
U |
|
|
€ |
|
|
|
t S € |
1 |
|
1 |
|
tL2 |
. |
|
|
|
|
||||||||||
y |
|
y |
L |
|
|
n |
t2 |
||||||
|
|
n |
|
|
y |
|
|
|
|||||
28. Розрахунок довірчих інтервалів прогнозу відносно тренду, що має вигляд полінома другого чи третього порядку:
U |
|
€ |
|
|
|
t S € |
1 |
1 |
tL2 |
|
t4 2tL2 t2 ntL4 |
. |
|
|
|
|
|
||||||||||
|
y |
|
|
n t2 |
|
n t4 |
t2 2 |
||||||
|
y |
n |
L |
|
y |
|
|
|
|||||
Аналогічно розраховуються довірчі інтервали для експоненційної кривої зростання, а також для кривих, що мають асимптоту (модифікована експонента, крива Гомперця, логістична крива), якщо значення асимптоти відоме.
29. Оптимальна довжина періоду упередження визначається окремо для кожного економічного явища з урахуванням статистичного коливання початкових даних, ґрунтуючись на змістовному міркуванні про стабільність явища. Ця довжина, як правило, не перевищує для рядів річних спостережень однієї третьої обсягу даних, а для квартальних і помісячних рядів — двох років.
30. Верифікація прогнозної моделі являє собою сукупність критеріїв, способів і процедур, що дають змогу, спираючись на багатосторонній аналіз, оцінити якість прогнозу.
31. Про точність прогнозу слід вирішувати за величиною його помилки — різницею між фактичними і прогнозними значеннями
49
показника, що досліджується. Визначити зазначену різницю можна лише у двох випадках: або коли період упередження вже закінчився і відомі фактичні значення прогнозованого показника, або коли прогнозування відбулося для деякого моменту в минулому, для якого відомі фактичні дані.
32. Найбільш простою мірою якості прогнозів за умови, що є дані про їх реалізації, буде відношення кількості випадків прогнозів, підтверджених фактичними даними, до загальної їх кількості, а саме:
|
|
c |
, |
|
c |
c |
|||
|
|
|||
|
1 |
|
|
де с — кількість прогнозів, що підтверджені фактичними данимиданими; с.1 — кількість прогнозів, не підтверджених фактичними
? |
11.8. Запитання та завдання |
|
для самостійної роботи |
||
|
1.Дайте визначення часового ряду.
2.Які часові ряди мають назву моментних і інтервальних?
3.Що характерно для стаціонарних рядів?
4.Під впливом яких факторів формуються рівні часового ряду?
5.Дайте визначення тренду часового ряду.
6.В чому полягає попередній аналіз часових рядів?
7.Які ви знаєте попередні методи виявлення тренду в часовому
ряду?
8.В чому полягає згладжування рядів динаміки за методом простої середньої і експоненціального згладжування?
9.Які ви знаєте криві зростання, що найчастіше застосовуються в економічних дослідженнях? Запишіть їх аналітичний вираз. Коли вживається та чи інша крива зростання?
10.Часовий ряд за 17 періодів (t = 1, 2, … 17) наводиться в табл.11.10.
Таблиця 11.10
t |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50
yt 15 12 13 25 24 33 30 37 43 53 51 62 60 71 78 83 86
Для визначення форми тренду:
1)знайдіть згладжувальні рівні ряду за методом простої середньої (m=3) і експенціального згладжування (α=0,1);
2)виберіть і розрахуйте параметри кривої зростання, яка, на ваш погляд, найбільш якісно апроксимує наведений ряд динаміки.
11.Часовий ряд наведено в табл. 11.11 за 10 періодів
Таблиця 11.11
t |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
|
|
|
|
|
|
|
|
|
|
yt |
43 |
47 |
50 |
48 |
54 |
57 |
61 |
59 |
65 |
62 |
|
|
|
|
|
|
|
|
|
|
|
Зробіть попередній вибір найкращої кривої зростання для цього ряду.
1. Для ряду (табл. 11.10) побудуйте: трендові моделі такого типу:
ŷt=a0+a1t; ŷt=a10bt.
Визначте їхні параметри методом 1МНК.
2.Для кривих зростання п.11 оцініть адекватність і точність моделей. Виберіть більш точну криву зростання.
3.Розрахуйте за вибраною моделлю п.11 екстраполяційні прогнози на два часових періоди: t=11, 12. Оцініть їхню точність.
11.9.Основні терміни і поняття
Часовий ряд Моментний ряд Інтервальний ряд Стаціонарний ряд Тренд часового ряду Сезонна складова ряду Циклічна складова Випадкова складова Згладжування ряду Криві зростання Трендова модель Поліноміальні криві зростання Експоненційні криві зростання Модифікована експонента Логістичні криві зростання Крива Гомперця Адекватність і точність трендової моделі Екстраполяційний
51
прогноз Період упередження Точковий прогноз Інтервальний прогноз Самодеструктивний прогноз Саморегулюючий прогноз Верифікація прогнозу
52
