
- •Общая микробиология
- •2. Основные группы микроорганизмов. Эукариоты и прокариоты. Особенности структурной организации прокариот. Генетический аппарат бактерий, его особенности, примеры автономных репликонов бактерий.
- •3. Понятие о подвижных генетических элементах. Гены-вставки, транспозоны, их функции. Инсерционный мутагенез.
- •6. Типы генетических рекомбинаций (гомологичная, негомологичная, сайтспецифическая). Механизмы мобилизации бактериальных генов: трансформация, трансдукция и конъюгация. Фаговая конверсия.
- •7. Принцип фенотипической классификации бактерий. Основные морфологические формы бактерий. Работы а. Левенгука.
- •8. Структурные компоненты бактериальной клетки: цитоплазматическая мембрана, внутриклеточные включения, жгутики, их структура и функции. Методы обнаружения включений и жгутиков.
- •9. Экологически зависимые структуры бактериальной клетки. Строение и функции бактериальной эндоспоры и капсулы, методы их обнаружения.
- •10. Тинкториальные свойства бактерий. Связь с особенностями строения трех основных типов клеточной стенки. Принцип окраски по методу Грама.
- •11. Актиномицеты, спирохеты как нетипичные бактерии. Особенности строения и физиологии.
- •12. Риккетсии, хламидии, микоплазмы как нетипичные бактерии. Особенности строения, метаболизма, экологии.
- •15. Принципы и методы культивирования бактерий. Условия, влияющие на рост и размножение бактерий. Ростовые факторы. Питательные среды и их классификация. Работы р. Коха.
- •17. Культуральные свойства бактерий. Характеристика колоний. Методы изучения культуральных свойств бактерий. Понятие о биотипе (биоваре).
- •18. Стерилизация и дезинфекция. Понятие о дезинфектантах и антисептиках. Основные методы стерилизации при проведении микробиологических исследований.
- •20. Антибиотикорезистентность бактерий. Генетические механизмы лекарственной устойчивости бактерий, пути преодоления. Методы определения чувствительности бактерий к антибиотикам.
- •21. Вирусы как особая форма жизни. Экология вирусов. Строения и химический состав вириона. Принципы классификации вирусов. Значение вирусов в патологии человека. Работы д. Ивановского.
- •24. Бактериофаги: строение, взаимодействие с бактериальной клеткой. Умеренные и вирулентные фаги. Лизогения. Практическое использование фагов. Понятие о фаговаре
- •25. Микробиологический анализ как основа лабораторной диагностики инфекционных заболеваний. Принципы и основные направления. Культурально-зависимые и культуральнонезависимые методы диагностики.
- •26. Культуральный метод (бактериологический анализ) в диагностике инфекционных заболеваний. Правила забора материала и основные этапы анализа. Принципы идентификации бактерий.
- •27. Принципы и методы экспресс-диагностики инфекционных заболеваний. Молекулярногенетические методы. Понятие о полимеразной цепной реакции (пцр), преимущества и ограничения метода.
- •28. Иммунохимический анализ. Задачи иммунохимического анализа. Серотипирование и серодиагностика. Реакции биологической нейтрализации.
- •Нейтрализация бактериального токсина.
- •Реакция торможения гемагглютинации.
- •Нейтрализация цитопатического действия вирусов.
- •29. Иммунохимический анализ: реакции агглютинации, преципитации. Варианты постановки реакций.
- •Реакция агглютинации на стекле.
- •Развернутая реакция агглютинации.
- •Рп в жидкой фазе (кольцепреципитация).
- •Рп в твердой среде (пример, двойная иммунодиффузия по Оухтерлони).
- •30. Иммунохимические реакции на основе меченых антител. Иммуноферментный анализ. Иммуноблотинг.
- •Иммуноферментный анализ.
- •Иммуноблотинг.
- •31. Серологическая диагностика. Титр антител. Принципы изучения качественной и количественной сероконверсии.
- •Генетические основы патогенности бактерий.
- •36. Патогенность и вирулентность бактерий: факторы и механизмы, способствующие адгезии, колонизации, инвазии, персистенции. Антифагоцитарные факторы бактерий.
- •37. Бактериальные экзотоксины, их характеристика, принцип действия. Классификация экзотоксинов. Молекулярное строение и функция бинарных токсинов. Суперантигены, механизм их токсического эффекта.
- •38. Эндотоксины бактерий, их характеристика. Патогенез лпс-зависимой интоксикации. Понятие о модулинах. Контактные токсины, механизм их действия.
37. Бактериальные экзотоксины, их характеристика, принцип действия. Классификация экзотоксинов. Молекулярное строение и функция бинарных токсинов. Суперантигены, механизм их токсического эффекта.
Экзотоксины – секреторные белковые вещества, проявляющие ферментативную активность и выделяющиеся во внешнюю среду.
По механизму действия экзотоксина на клетку различают:
Цитотоксины;
Мембранотоксины;
Функциональные блокаторы;
Эксфолианты;
Эритрогемины;
Механизм действия белковых токсинов сводится к повреждению жизненно важных процессов в клетке: повышению проницаемости мембран, блокаде синтеза белка и других биохимических процессов в клетке или нарушению взаимодействия и взаимокоординации между клетками.
По молекулярной организации экзотоксины делятся на две группы: 1. Экзотоксины, состоящие из двух фрагментов: бинарные «А» (токсичен) и «Б» (для инвазии); 2. Экзотоксины, составляющие единую полипептидную цепь;
По степени связи с бактериальной клетки экзотоксины делятся условно на три класса: 1. Класс А - токсины, секретируемые во внешнюю среду; 2. Класс В - токсины частично секретируемые и частично связанные с микробной клеткой; 3. Класс С - токсины, попадающие в окружающую среду при разрушении клетки.
Экзотоксины обладают высокой токсичностью. Под воздействием формалина и температуры экзотоксины утрачивают свою токсичность, но сохраняют иммуногенное свойство. Такие токсины получили название анатоксины и применяются для профилактики заболевания.
Бинарные токсины.
А-фрагменты бинарных токсинов действиют как НАД-гидролазы и АДФ-рибозилтрансферазы, а также обладают высокой избирательностью катализа. Попав в клетку, каждый из них находит собственную мишень, модифицируя строго определенные ферменты. В сочетании со спецификой связывания В-фрагмента это объясняет особенности биологического эффекта разных токсинов. Например, дифтерийный токсин инактивирует (АДФ-рибозилирует) фактор элонгации-2, нарушая сборку пептидов на рибосомах. Энтеротоксин холерного вибриона (холероген) модифицирует белок (G-белок), блокирующий аденилатциклазу энтероцитов; это ведет к повышению внутриклеточного уровня циклического аденозинмонофосфата (цАМФ), гиперсекреции изотонической жидкости в тонком кишечнике и дегидратации организма. Кстати, известны токсины, обладающие прямой аденилатциклазной активностью (один из минорных токсинов коклюшной палочки, отечный фактор токсина сибиреязвенных бацилл). Они извращают функции клеток, нарушая внутриклеточный гомеостаз по цАМФ. Суперантиген — антиген, способный вызывать массовую неспецифическую активацию Т-лимфоцитов. Все известные на сегодняшний день суперантигены имеют белковую природу. Суперантигены отличаются от всех остальных антигенов тем, что они активируют Т-клетки в свободном виде без необходимости предварительного процессинга и презентации на поверхности антигенпредставляющих клеток. К суперантигенам относят стафилококковый энтеротоксин, который вызывает пищевые отравления, TSST-1 (англ. toxic shock syndrome toxin-1), который вызывает синдром токсического шока.
Механизм суперантигенов: Суперантигены способны одновременно связывать молекулы главного комплекса гистосовместимости II класса (англ. MHC II) на поверхности антигенпредставляющей клетки и фрагмент Т-клеточного рецептора на поверхности Т-клетки, имитируя таким образом узнавание антигена Т-клеточным рецептором. Понятно, что при таком взаимодействии природа антигена, находящегося в комплексе с MHC II, не имеет значения — происходит неспецифическая активация всех Т-клеток, несущих на своей поверхности определённый тип β-субъединиц Т-клеточного рецептора. Суперантиген, таким образом, может вызывать активацию 2—20 % всех Т-клеток. Большую часть этих клеток обычно составляют CD4-положительные Т-хелперы, которые начинают выделять большие количества цитокинов. Избыток цитокинов приводит к системной токсичности и подавлению адаптивного иммунного ответа, что выгодно для патогенного микроорганизма.
По-простому: Так называются антигены, вызывающие неспецифическую поликлональную активацию и пролиферацию Т-лимфоцитов. Если обычный антиген вызывает активацию и полиферацию лишь «своего» и близких к нему клонов Т-лимфоцитов (примерно 0,01% общего пула этих клеток), то суперантигены активируют до 20% Т-лимфоцитов макроорганизма, причем – без процессинга в антигенпрезентирующих клетках.
В результате активированные многочисленные клоны Т-лимфоцитов продуцируют огромное количество активационных цитокинов, что может привести к развитию синдрома общей интоксикации.
С другой стороны, активированные Т-лимфоцитов имеют ограниченный срок жизни и быстро погибают, что может привести к развитию иммунодефицита вследствие физического недостатка этих клеток.