
- •Радиоэлектронные устройства (справочник) Издательство «Радио и связь», 1984 предисловие
- •Глава 1 микросхемы и схемы их включения
- •1. Микросхемы серии к140
- •2. Микросхемы серии к153
- •3. Микросхемы серии k154
- •4. Микросхемы серии к157
- •5. Микросхемы серии к544
- •6. Микросхемы серии к574уд1
- •Глава 2 эквиваленты радиоэлементов
- •1. Резисторные мосты
- •2. Потенциометры
- •3. Аттенюаторы
- •4. Эквиваленты конденсаторов
- •5. Эквиваленты диодов и транзисторов
- •6. Параметры контура
- •7. Преобразователи сопротивлений
- •8. Преобразователи тока
- •9. Преобразователи «напряжение — ток»
- •10. Каскодное включение
- •Глава 3 двухполюсники с отрицательным сопротивлением
- •I. Схемы с характеристикой s-вида
- •2. Схемы с характеристикой n-вида
- •Глава 4 усилители
- •I. Управление коэффициентом усиления
- •2. Сдвоенные оу
- •3. Расширение возможностей оу
- •4. Усилители мощности
- •5. Предусилителй с управляемыми параметрами
- •6. Усилители с непосредственными связями на транзисторах
- •7. Усилители с частотно-зависимым коэффициентом усиления
- •8. Электрометрические усилители
- •9. Усилители с непосредственными связями
- •10. Многокаскадные усилители
- •II. Кабельные усилители
- •12. Мостовые усилители
- •13. Измерительные усилители
- •14. Чувствительные упч
- •15. Полосовые усилители
- •16. Усилители с ару
- •Глава 5 фильтры
- •1. Фильтры с полосой пропускания до 1 кГц
- •2. Многозвенные фильтры
- •3. Управляемые фильтры
- •4. Фильтры на микросхемах
- •5. Фильтры на транзисторах
- •6. Фильтры с повторителями напряжения
- •7. Фильтры на усилителях
- •8. Полосовые фильтры
- •9. Перестраиваемые фильтры
- •Глава 6 модуляторы постоянного тока
- •1. Переключатели на микросхемах
- •2. Переключатели на биполярных транзисторах
- •3. Переключатели на полевых транзисторах
- •4. Переключатели со схемой управления
- •Глава 7 модуляторы переменного тока
- •1. Модуляторы на полевых транзисторах
- •2. Модуляторы гармонических колебаний
- •3. Модуляторы со схемой управления
- •4. Модуляторы вч колебаний на биполярных транзисторах
- •5. Модуляторы на оу
- •Глава 8 детекторы
- •1. Двухполупериодные детекторы
- •2. Детекторы вч сигналов
- •3. Детекторы с оу
- •4. Детекторы с нелинейными передаточными характеристиками
- •5. Частотные детекторы
- •6. Фазовые детекторы
- •7. Однотактные детекторы
- •8. Двухтактные детекторы
- •Глава 9 генераторы гармонических колебаний
- •1. Однокаскадные генераторы
- •2. Многодиапазонные генераторы
- •3. Генераторы на микросхемах
- •4. Генераторы многофазных сигналов
- •5. Генераторы с управляемой амплитудой сигнала
- •6. Многозвенные генераторы
- •Глава 10 импульсные генераторы
- •1. Генераторы на транзисторах
- •2. Генераторы на микросхемах
- •Глава 11 генераторы сигналов специальной формы
- •1. Импульсные генераторы
- •2. Генераторы сигнала пилообразной формы
- •3. Управляемые генераторы
- •4. Генераторы на оу
- •5. Генераторы сложных сигналов
- •Глава 12 управляемые импульсные генераторы
- •1. Двухкаскадные релаксаторы
- •2. Трехкаскадные релаксаторы
- •3. Многокаскадные релаксаторы
- •4. Релаксаторы на логических элементах
- •5. Преобразователи на оу и компараторах
- •6. Счетчики импульсов
- •Глава 13 компараторы, сравнивающие устройства, ограничители
- •1. Ограничители
- •2. Преобразователи формы сигнала
- •3. Пороговые устройства
- •Глава 14 преобразователи частоты
- •1. Преобразователи на транзисторах
- •2. Преобразователи на микросхемах
- •3. Умножители частоты
- •Глава 15 преобразователи сигналов
- •1. Фазочувствительные схемы
- •2. Схемы формирования абсолютного значения
- •3. Умножители
- •4. Аппроксиматоры
- •5. Фазосдвитающие схемы
- •6. Интеграторы, дифференциаторы
- •7. Преобразователи сигналов
- •Глава 16 стабилизаторы напряжения и тока
- •1. Формирователи опорного напряжения
- •2. Маломощные транзисторные стабилизаторы
- •3. Микросхемные стабилизаторы
- •4. Мощные стабилизаторы
- •5. Стабилизаторы с защитой
- •6. Стабилизаторы с оу
- •Глава 17 преобразователи напряжения
- •1. Выпрямительные мосты
- •2. Транзисторные преобразователи
- •3. Двухкаскадные преобразователи
- •5. Умножители напряжения
- •Приложение. Указатель схем включения микросхем и их зарубежные аналоги
- •Редакция литературы по электронной технике
- •Радиоэлектронные устройства (справочник)
1. Формирователи опорного напряжения
Стабилитроны. Серийно выпускаемые стабилитроны имеют разные вольт-амперные характеристики. Максимальной крутизной обладают стабилитроны с опорным напряжением 7 — 8 В. Температурный коэффициент напряжения (ТКН) стабилитронов с напряжением стабилизации менее 5 В имеет отрицательное значение. Для опорного напряжения около 5,4 В при токе 7 мА ТКН равен нулю. Стабилитроны с опорным напряжением более б В имеют положительный ТКН.
Минимальным внутренним дифференциальным сопротивлением обладают диоды с опорным напряжением 7 — 8 В. Все остальные диоды имеют большое внутреннее сопротивление. Это сопротивление сильно зависит от тока, протекающего через диод. Рабочим током стабилитронов следует считать ток более 3 мА. Ряд графиф-ских зависимостей, характеризующих работу стабилитронов, приведен на рис. 16.1.
Управляемый стабилитрон. В обычных стабилитронах при изменении протекающего тока в некоторых .пределах меняется опорное напряжение Е0. В приведенной схеме (рис. 16.2, а) ток, протекающий через стабилитрон, контролируется ОУ. Если ОУ не может обеспечить требуемый ток нагрузки, то на выход ОУ целесообразно включить транзистор (рис. 162, б). Транзистор полезен и в случае протекания значительного тока через стабилитрон, например, более 5 — 10 мА (при этом стабилитрон обладает меньшим внутренним сопротивлением). Выходное напряжение определяется выражением U=EO/[1 — R3/(R2+R3)]. При изменении соотношения между сопротивлениями R2 и R3 можно регулировать выходное напряжение в широких пределах. Временной дрейф выходного напряжения не превышает 1 мВ, температурный дрейф в диапазоне от 0 до 85°С не превышает 1 мВ. Выходное сопротивление при изменении тока нагрузки до 20 мА составляет 0,025 Ом. Общая нестабильность выходного напряжения не превышает 0,05 %.
Рис. 16.1
Рис. 16.2
Стабилизатор напряжения на светодиоде. С помощью светоди-одов можно получить стабилизатор с индикацией (рис. 163). Интенсивность свечения диода зависит от протекающего ччерез него тока. Этот ток определяется сопротивлением резистора R1.
Рис. 16.3
Дифференциальное, сопротивление прямой ветви светодиода АЛ 108 равно 0,3 — 12 Ом. При обратном напряжении пробой наступает при напряжении для АЛ 108 — 104-20 В и АЛ 109 — 5-М О В. Температурный коэффициент изменения прямого напряжения равен приблизительно 0,12 % на градус. Прямое напряжение при токе 100 мА для АЛ108 равно 1,15 — 1,25 В, а для АЛ109 — 1,0-М,15 В, емкость переходов равна соответственно 130 — 300 пФ и 200 — 400 пФ.
Схема термостабильного опорного напряжения. Схема (рис. 16.4) позволяет получить стабильное напряжение в широком диапазоне температур. Опорное напряжение, имеющее нулевой ТКН, устанавливается потенциометром: U0п = Uд+ТКНд/ТКНстUст, где Uд — падение напряжения на диоде; Uст — опорное напряжение стабилитрона, ТКНД и ТКНст — температурные коэффициенты напряжения диода и стабилитрона. Если вместо одного диода VD2 включить два кремниевых диода, то опорное напряжение увеличится в два раза.
Рис. 16.4 Рис. 16.5
Низковольтный стабилитрон. Стабилитрон (рис. 16.5) имеет опорное напряжение 0,65 В для кремниевых и 0,3 В для германиевых транзисторов. Внутреннее сопротивление стабилитрона менее 5 Ом. Стабилитрон обладает коэффициентом стабилизации 103. Изменение выходного напряжения при изменении температуры составляет 2 мВ/град или 1 % на градус для германиевых транзисторов и 0,3 % на градус для кремниевых транзисторов.
Полевой транзистор в качестве низковольтного стабилитрона. При включении резистора в цепь истока полевого транзистора возникает напряжение ОС. Это напряжение слабо зависит от питающего напряжения. Напряжение ОС определяется потенциалом отсечки полевого транзистора. Схема с одним транзистором (рис. 16.6, а) обеспечивает внутреннее сопротивление приблизительно 30 Ом, а с двумя транзисторами (рис. 166, б) имеет внутреннее сопротивление менее 5 Ом. Кроме того, схема с двумя транзисторами обладает и большим коэффициентом стабилизации (более 103). Температурная стабилизация может быть обеспечена, если режим работы транзистора вывести в термостабильную точку, а также применить терморезисторы в цепи истока.
Увеличение максимального тока стабилитрона. Устройство (рис. 16 7) служит для стабилизации напряжения в цепях, в которых ток нагрузки превышает максимальный ток стабилитрона Когда напряжение на коллекторе транзистора превышает опорный уровень стабилитрона, начинает протекать базовый ток транзистора, который в h21Э раз меньше коллекторного тока. В результате основной ток резистора R1 будет протекать через транзистор Схема выполняет функции стабилитрона с увеличенным максимально допустимым током. Внутреннее сопротивление устройства составляет 0,6 Ом.
Рис. 16.6
Рис. 16.7
Схема с отрицательным коэффициентом стабилизации. Схема формирования опорного напряжения (рис. 16.8, а) имеет отрицательный коэффициент стабилизации K=ДE/ДU. Этот коэффициент можно регулировать изменением сопротивлений резисторов R1 и R2.
Зависимость этих параметров выражается формулой К= — K1/K2. Графическая интерпретация зависимостей представлена на рис 16.8, б.
Схема с регулируемым коэффициентом стабилизации. Схема формирования опорного напряжения (рис. 16.9, а) обладает как положительным, так и отрицательным коэффициентами стабилизации. Знак коэффициента стабилизации определяется отношением сопротивлений резисторов R2/R4. При R4<R2 .коэффициент стабилизации имеет положительный знак, а для R4>R2 — отрицательный. Зависимость изменения выходного напряжения от входного при различных сопротивлениях R4 представлена на рис. 16.9, б.
Рис. 16.8
Рис. 16.9
Рис. 16.10
Схема низковольтного опорного источника. Источник опорного напряжения (рис. 16.10, а) построен на интегральной микросхеме К101КТ1. С помощью этой схемы можно получить стабильное напряжение 0,7 В с внутренним сопротивлением менее 10 Ом. Выходное напряжение зависит от температуры с коэффициентом 2 мВ/град. Коэффициент стабилизации равен приблизительно 5-103. На рдс. 16.10, б представлена зависимость напряжения стабилизации от подводимого напряжения.