
- •Радиоэлектронные устройства (справочник) Издательство «Радио и связь», 1984 предисловие
- •Глава 1 микросхемы и схемы их включения
- •1. Микросхемы серии к140
- •2. Микросхемы серии к153
- •3. Микросхемы серии k154
- •4. Микросхемы серии к157
- •5. Микросхемы серии к544
- •6. Микросхемы серии к574уд1
- •Глава 2 эквиваленты радиоэлементов
- •1. Резисторные мосты
- •2. Потенциометры
- •3. Аттенюаторы
- •4. Эквиваленты конденсаторов
- •5. Эквиваленты диодов и транзисторов
- •6. Параметры контура
- •7. Преобразователи сопротивлений
- •8. Преобразователи тока
- •9. Преобразователи «напряжение — ток»
- •10. Каскодное включение
- •Глава 3 двухполюсники с отрицательным сопротивлением
- •I. Схемы с характеристикой s-вида
- •2. Схемы с характеристикой n-вида
- •Глава 4 усилители
- •I. Управление коэффициентом усиления
- •2. Сдвоенные оу
- •3. Расширение возможностей оу
- •4. Усилители мощности
- •5. Предусилителй с управляемыми параметрами
- •6. Усилители с непосредственными связями на транзисторах
- •7. Усилители с частотно-зависимым коэффициентом усиления
- •8. Электрометрические усилители
- •9. Усилители с непосредственными связями
- •10. Многокаскадные усилители
- •II. Кабельные усилители
- •12. Мостовые усилители
- •13. Измерительные усилители
- •14. Чувствительные упч
- •15. Полосовые усилители
- •16. Усилители с ару
- •Глава 5 фильтры
- •1. Фильтры с полосой пропускания до 1 кГц
- •2. Многозвенные фильтры
- •3. Управляемые фильтры
- •4. Фильтры на микросхемах
- •5. Фильтры на транзисторах
- •6. Фильтры с повторителями напряжения
- •7. Фильтры на усилителях
- •8. Полосовые фильтры
- •9. Перестраиваемые фильтры
- •Глава 6 модуляторы постоянного тока
- •1. Переключатели на микросхемах
- •2. Переключатели на биполярных транзисторах
- •3. Переключатели на полевых транзисторах
- •4. Переключатели со схемой управления
- •Глава 7 модуляторы переменного тока
- •1. Модуляторы на полевых транзисторах
- •2. Модуляторы гармонических колебаний
- •3. Модуляторы со схемой управления
- •4. Модуляторы вч колебаний на биполярных транзисторах
- •5. Модуляторы на оу
- •Глава 8 детекторы
- •1. Двухполупериодные детекторы
- •2. Детекторы вч сигналов
- •3. Детекторы с оу
- •4. Детекторы с нелинейными передаточными характеристиками
- •5. Частотные детекторы
- •6. Фазовые детекторы
- •7. Однотактные детекторы
- •8. Двухтактные детекторы
- •Глава 9 генераторы гармонических колебаний
- •1. Однокаскадные генераторы
- •2. Многодиапазонные генераторы
- •3. Генераторы на микросхемах
- •4. Генераторы многофазных сигналов
- •5. Генераторы с управляемой амплитудой сигнала
- •6. Многозвенные генераторы
- •Глава 10 импульсные генераторы
- •1. Генераторы на транзисторах
- •2. Генераторы на микросхемах
- •Глава 11 генераторы сигналов специальной формы
- •1. Импульсные генераторы
- •2. Генераторы сигнала пилообразной формы
- •3. Управляемые генераторы
- •4. Генераторы на оу
- •5. Генераторы сложных сигналов
- •Глава 12 управляемые импульсные генераторы
- •1. Двухкаскадные релаксаторы
- •2. Трехкаскадные релаксаторы
- •3. Многокаскадные релаксаторы
- •4. Релаксаторы на логических элементах
- •5. Преобразователи на оу и компараторах
- •6. Счетчики импульсов
- •Глава 13 компараторы, сравнивающие устройства, ограничители
- •1. Ограничители
- •2. Преобразователи формы сигнала
- •3. Пороговые устройства
- •Глава 14 преобразователи частоты
- •1. Преобразователи на транзисторах
- •2. Преобразователи на микросхемах
- •3. Умножители частоты
- •Глава 15 преобразователи сигналов
- •1. Фазочувствительные схемы
- •2. Схемы формирования абсолютного значения
- •3. Умножители
- •4. Аппроксиматоры
- •5. Фазосдвитающие схемы
- •6. Интеграторы, дифференциаторы
- •7. Преобразователи сигналов
- •Глава 16 стабилизаторы напряжения и тока
- •1. Формирователи опорного напряжения
- •2. Маломощные транзисторные стабилизаторы
- •3. Микросхемные стабилизаторы
- •4. Мощные стабилизаторы
- •5. Стабилизаторы с защитой
- •6. Стабилизаторы с оу
- •Глава 17 преобразователи напряжения
- •1. Выпрямительные мосты
- •2. Транзисторные преобразователи
- •3. Двухкаскадные преобразователи
- •5. Умножители напряжения
- •Приложение. Указатель схем включения микросхем и их зарубежные аналоги
- •Редакция литературы по электронной технике
- •Радиоэлектронные устройства (справочник)
7. Преобразователи сигналов
Пороговый преобразователь входного сигнала. Схема (рис. 15.46, а) осуществляет поочередное включение светодиодов, подсоединенных к выходам ОУ. Диоды включены таким образом, что при включении последующего диода выключается предыдущий. Это достигается тем, что пороги- открывания ОУ различны: у усилителя DA1 минимальный порог, а у усилителя DA3 — максимальный. У всех закрытых ОУ выходные напряжения имеют минусовое значение. С включением первого усилителя через первый светоднод протекает ток, он светится. Когда включается второй усилитель, загорается второй светодиод, а первый выключается, поскольку выходные напряжения первых двух усилителей будут равны.
Рис. 15.46
Если вместо светодиодов поставить транзисторы, то в зависимости от уровня входного сигнала будет включаться определенный транзистор и через его коллектор потечет ток. Ток регулируется эмиттерными резисторами. На схеме (рис. 15.46, б) ток равен 10 мА.
Квантующий преобразователь. Устройство служит для квантования входного сигнала на дискретные уровни и отображения его на светодиодном экране. Схема (рис, 15.47) состоит из двух парал-лельцых рядов ОУ (компараторов). Каждый ОУ имеет свой порог открывания. Микросхемы DAI — DA9 имеют пороги открывания, установленные с дискретностью 50 мВ, а ОУ DA10 — DA19 имеют пороги с дискретностью 500 мВ. Входной сигнал поступает одновременно на все входы ОУ. При нулевом входном сигнале ОУ DAI — DA9 будут иметь на выходе положительные напряжения, а DA10 — DA19 — отрицательные. Когда входное напряжение достигнет 50 мВ, переключится ОУ DA9. При дальнейшем увеличении входного сигнала будут поочередно включаться ОУ DA8 — DA1. Микросхема DA1 переключится при входном напряжении 450 мВ. Когда напряжение на входе достигнет 500 мВ, переключится ОУ DA19. На выходе микросхемы появится напряжение положительной полярности, которое пройдет через диод VD9 на транзистор VT9. Полевой транзистор включен в режим генератора тока. С помощью резистора R29 устанавливается ток стока 1 мА. Этот ток при Протекании через резисторы R2 — R10 изменит пороги переключения микросхем DAI — DA9. У микросхемы DA9. порог составляет 550 мВ, а у микросхемы DA8 — 600 мВ и т. д. Микросхемы DAI — DA9 вновь начнут отслеживать входной сигнал. Когда входной сигнал достигнет уровня 1 В, сработает микросхема DA18, которая снова изменит пороги срабатывания, микросхем DAI — DA9. Этот процесс периодически будет повторяться до максимального значения входного сигнала, равного 5 В. Для настройки преобразователя необходимо значительное внимание уделить стабильности ОС, вводимой через транзисторы. Следует с большой точностью устанавливать пороги открывания микросхем.
Рис. 15.47
Рассмотренную схему можно применить как преобразователь аналог — код, если на выходе ОУ поставить дополнительные логические элементы.
Рис. 15.48
Преобразователь «напряжение — частота». Входной сигнал отрицательной полярности подается на вход интегратора (рис 1548 а) Напряжение на выходе ОУ DA1 ллавно нарастает: Микросхема DA2 закрыта напряжением с потенциометра R4, Отрицательное выходное напряжение этого ОУ закрывает транзистор. Когда напряжение на интеграторе превысит напряжение на потенциометре (2 В) ОУ DA2 переключится. Положительное напряжение откроет транзистор. Произойдет разряд конденсатора. Если входной сигнал меняется от 0,1 до 3 В, то частота линейно меняется от 100 Гц до 10 кГц. Линейный закон изменения частоты выходного сигнала от амплитуды входного выполняется с точностью ±1 % (рис 1548 б)
Рис. 15.49
Рис. 15.50
Преобразователь «напряжение — время». Операционные усилители DA1 и DA2 преобразователя (рис. 15.49) образуют генератор треугольных импульсов. Микросхема DA2 выдает на выходе прямоугольные импульсы, амплитуда которых определяется стабилитронами. Микросхема DA1 интегрирует эти прямоугольные импульсы « формирует треугольные. Частоту импульсов можно регулировать в пределах от 0,05 до 4 Гц Выходной сигнал генератора треугольных импульсов суммируется с сигналом на входе Нуль-индикатором является ОУ DA3. В момент равенства слагаемых сигналов ОУ переключается. Длительность выходного сигнала обратно пропорциональна амплитуде входного. Максимальная амплитуда выходного сигнала зависит от напряжения на стабилитроне VDL Линейный преобразователь «напряжение — частота» При действии на входе ОУ DA1 преобразователя (рис. 1550, а) положительного напряжения происходит заряд конденсатора С1. Напряжение на входе ОУ DA2 постепенно увеличивается. Когда это напряжение достигнет порогового уровня E2, ОУ DA2 переключится и положительное напряжение на его выходе откроет транзистор VT1. Конденсатор С1 быстро разрядится через транзистор. После этого начинается новый цикл заряда конденсатора. Частота следования импульсных сигналов на выходе микросхемы DA2 определяется выражением f=E1/E2R1C. Если транзистор обладает большим неуправляемым коллекторным током, то следует между базой и эмиттером включить резистор сопротивлением 10 кОм. Работа схемы проиллюстрирована графиком на рис. 15,50, б.