Скачиваний:
239
Добавлен:
07.01.2022
Размер:
4.79 Mб
Скачать

5. Модуляторы на оу

Дискретный фазовый модулятор. Операционный усилитель в схеме модулятора (рис. 7.28) меняет знак коэффициента усиления в зависимости от полярности управляющего напряжения. Когда уп­равляющий сигнал имеет отрицательную полярность, транзистор VT закрыт. Сигнал поступает на оба входа ОУ, который работает в этом случае как повторитель. Коэффициент усиления будет ра­вен 1. При положительном управляющем сигнале транзистор VT1 открывается. Неинвертирующий вход усилителя в этом случае ока­зывается заземленным. Входной сигнал теперь поступает только на инвертирующий вход. Следователь­но, коэффициент усиления будет ра­вен — 1.

Рис. 7.28

Амплитуда допустимого входно­го сигнала определяется допусти­мыми параметрами ОУ. Управляю­щий сигнал отрицательной полярно сти должен превышать амплитуду входного сигнала. В противном слу­чае отрицательная полярность вход­ного сигнала откроет переход база — эмиттер транзистора VT1 и на вы­ходе появится искаженный сигнал.

Фазовый модулятор на ОУ. Ц основу фазового модулятора (рис 729, а) положена RС-цепь, подключенная к неинвертируюшему входу ОУ Независимо от частоты входного сигнала амплитуда выходного сигнала остается постоянной. Фазорегулируемая RС-цепочка построена на конденсаторе С1 и сопротивлении полевого транзистора. Зависимость фазы выходного сигнала от управляюще­го напряжения в затворе полевого транзистора показана на рис. 7.29,6. Следует иметь в виду, что при фазовых сдвигах близ­ких к 90°, могут возникнуть нелинейные искажения в выходном сигнале, если амплитуда вход­ного сигнала более 100 мВ

Рис. 7.29

Модулятор на полевом тран­зисторе и ОУ. Модулятор (рис. 7.30) построен на ОУ, ко входам которого подводится гар­монический сигнал. Переключе­ние фазы выходного сигнала осу­ществляется с помощью полевого транзистора VT1, который может находиться в открытом или за­крытом состоянии. Управление полевым транзистором осуществ­ляется транзистором VT2. При нулевом напряжении в базе тран­зистора VT2 полевой транзистор закрыт. Положительное управля­ющее напряжение открывает транзистор VT2. В затворе полевого транзистора будет нулевой потенциал, который является для него открывающим.

При закрытом полевом транзисторе входной сигнал поступает на инвертирующий вход ОУ. Коэффициент усиления усилителя опре­деляется резисторами R3 — R5. Когда полевой транзистор открыт, входной сигнал поступает на оба входа. Однако, поскольку неинвер­тирующий вход имеет сигнал в два раза больше, чем сигнал на инвертирующем входе, то на выходе будет существовать сигнал, совпадающий по фазе с входным сигналом. Общий диапазон изме­нения фазы выходного сигнала составляет 180°.

Рис. 7.30

Глава 8 детекторы

Детектирование является процессом, обратным модуляции. Возможны три вида детектирования: амплитудное, частотное и фа­зовое. Кроме этого существует синхронное детектирование, которое в равной степени может быть применено для любого вида модуля­ции. При синхронном детектировании осуществляется процесс пере­множения входного сигнала с опорным. Опорный периодический сигнал может носить как гармонический, так и релейный характер. Большое распространение получил релейный вид опорного сигнала.

Несинхронное детектирование не требует дополнительного сиг­нала. При таком детектировании каждый вид модуляции требует свою преобразующую схему. Амплитудное детектирование осуществ­ляется с помощью выпрямительного диода. Частотное детектирова­ние требует предварительного преобразования ЧМ колебаний в AM, например, с помощью колебательного контура, резонансная ча­стота которого расстроена относительно частоты высокочастотного сигнала, с дальнейшим амплитудным детектированием. Аналогичную структуру имеют фазовые детекторы, с той лишь разницей, что для преобразования ФМ колебаний в AM используется, например, RС-цепь.

Простые детекторы имеют ряд существенных недостатков, ко­торые заставляют усложнять схему детекторных устройств. Для AM сигнала существенные ограничения возникают из-за порога от­крывания выпрямительного диода. По этой причине чувствитель­ность детектора получается низкой. Применение транзисторов и ОУ значительно увеличивает динамический диапазон детектора. Необ­ходимость точного преобразования малых сигналов связана со все-расширяющимся использованием в радиоэлектронных устройствах микросхем и соответствующим снижением уровней рабочих сиг­налов.

Расстроенный одиночный контур, используемый в ЧМ детекто­рах, имеет ограниченный линейный участок. Для расширения ли­нейного участка возможно применение двух расстроенных контуров, но и в этом случае выходная характеристика детектора оставляет желать лучшего. В последнее время в качестве частотного детек­тора применяются дифференцирующие схемы. Амплитуда выходного гармонического сигнала в этих схемах прямо пропорциональна ча­стоте входного сигнала.

Детектирование ФМ сигналов не отличается принципиально от детектирования ЧМ сигналов. Здесь могут применяться те же ме­тоды, что и при детектировании ЧМ колебаний.

Общим детектором для всех видов модуляции является синхрон­ный детектор. Перемножение входного сигнала с опорным форми­рует на выходе синхронного детектора сигнал, несущий информацию об изменении амплитуды, частоты и фазы входного сигнала. Пусть UBX. = A (t)cos[w0t+f (t)] и Uоп = соsw0t. Выходной сигнал описы­вается выражением

После фильтрации высокочастотных составляющих получим Uвыx = = A(t)cosf(t) /2 Здесь при A(t)=const и f(t)=ф(t) получим Uвых = cos ф (t) — фазовый детектор, для f(t) =Qt — частотный де­тектор, а для f (t) = const Uвых==A(t)/2 — амплитудный детектор. Установка рабочего режима ОУ, который используется в устрой­ствах, показана в гл. 1.