
- •Радиоэлектронные устройства (справочник) Издательство «Радио и связь», 1984 предисловие
- •Глава 1 микросхемы и схемы их включения
- •1. Микросхемы серии к140
- •2. Микросхемы серии к153
- •3. Микросхемы серии k154
- •4. Микросхемы серии к157
- •5. Микросхемы серии к544
- •6. Микросхемы серии к574уд1
- •Глава 2 эквиваленты радиоэлементов
- •1. Резисторные мосты
- •2. Потенциометры
- •3. Аттенюаторы
- •4. Эквиваленты конденсаторов
- •5. Эквиваленты диодов и транзисторов
- •6. Параметры контура
- •7. Преобразователи сопротивлений
- •8. Преобразователи тока
- •9. Преобразователи «напряжение — ток»
- •10. Каскодное включение
- •Глава 3 двухполюсники с отрицательным сопротивлением
- •I. Схемы с характеристикой s-вида
- •2. Схемы с характеристикой n-вида
- •Глава 4 усилители
- •I. Управление коэффициентом усиления
- •2. Сдвоенные оу
- •3. Расширение возможностей оу
- •4. Усилители мощности
- •5. Предусилителй с управляемыми параметрами
- •6. Усилители с непосредственными связями на транзисторах
- •7. Усилители с частотно-зависимым коэффициентом усиления
- •8. Электрометрические усилители
- •9. Усилители с непосредственными связями
- •10. Многокаскадные усилители
- •II. Кабельные усилители
- •12. Мостовые усилители
- •13. Измерительные усилители
- •14. Чувствительные упч
- •15. Полосовые усилители
- •16. Усилители с ару
- •Глава 5 фильтры
- •1. Фильтры с полосой пропускания до 1 кГц
- •2. Многозвенные фильтры
- •3. Управляемые фильтры
- •4. Фильтры на микросхемах
- •5. Фильтры на транзисторах
- •6. Фильтры с повторителями напряжения
- •7. Фильтры на усилителях
- •8. Полосовые фильтры
- •9. Перестраиваемые фильтры
- •Глава 6 модуляторы постоянного тока
- •1. Переключатели на микросхемах
- •2. Переключатели на биполярных транзисторах
- •3. Переключатели на полевых транзисторах
- •4. Переключатели со схемой управления
- •Глава 7 модуляторы переменного тока
- •1. Модуляторы на полевых транзисторах
- •2. Модуляторы гармонических колебаний
- •3. Модуляторы со схемой управления
- •4. Модуляторы вч колебаний на биполярных транзисторах
- •5. Модуляторы на оу
- •Глава 8 детекторы
- •1. Двухполупериодные детекторы
- •2. Детекторы вч сигналов
- •3. Детекторы с оу
- •4. Детекторы с нелинейными передаточными характеристиками
- •5. Частотные детекторы
- •6. Фазовые детекторы
- •7. Однотактные детекторы
- •8. Двухтактные детекторы
- •Глава 9 генераторы гармонических колебаний
- •1. Однокаскадные генераторы
- •2. Многодиапазонные генераторы
- •3. Генераторы на микросхемах
- •4. Генераторы многофазных сигналов
- •5. Генераторы с управляемой амплитудой сигнала
- •6. Многозвенные генераторы
- •Глава 10 импульсные генераторы
- •1. Генераторы на транзисторах
- •2. Генераторы на микросхемах
- •Глава 11 генераторы сигналов специальной формы
- •1. Импульсные генераторы
- •2. Генераторы сигнала пилообразной формы
- •3. Управляемые генераторы
- •4. Генераторы на оу
- •5. Генераторы сложных сигналов
- •Глава 12 управляемые импульсные генераторы
- •1. Двухкаскадные релаксаторы
- •2. Трехкаскадные релаксаторы
- •3. Многокаскадные релаксаторы
- •4. Релаксаторы на логических элементах
- •5. Преобразователи на оу и компараторах
- •6. Счетчики импульсов
- •Глава 13 компараторы, сравнивающие устройства, ограничители
- •1. Ограничители
- •2. Преобразователи формы сигнала
- •3. Пороговые устройства
- •Глава 14 преобразователи частоты
- •1. Преобразователи на транзисторах
- •2. Преобразователи на микросхемах
- •3. Умножители частоты
- •Глава 15 преобразователи сигналов
- •1. Фазочувствительные схемы
- •2. Схемы формирования абсолютного значения
- •3. Умножители
- •4. Аппроксиматоры
- •5. Фазосдвитающие схемы
- •6. Интеграторы, дифференциаторы
- •7. Преобразователи сигналов
- •Глава 16 стабилизаторы напряжения и тока
- •1. Формирователи опорного напряжения
- •2. Маломощные транзисторные стабилизаторы
- •3. Микросхемные стабилизаторы
- •4. Мощные стабилизаторы
- •5. Стабилизаторы с защитой
- •6. Стабилизаторы с оу
- •Глава 17 преобразователи напряжения
- •1. Выпрямительные мосты
- •2. Транзисторные преобразователи
- •3. Двухкаскадные преобразователи
- •5. Умножители напряжения
- •Приложение. Указатель схем включения микросхем и их зарубежные аналоги
- •Редакция литературы по электронной технике
- •Радиоэлектронные устройства (справочник)
3. Переключатели на полевых транзисторах
Аттенюатор. Максимальное ослабление аттенюатора (рис. 6.9) составляет 80 дБ, а переменного напряжения с частотой до 500 кГц — более 60 дБ. Максимальный коэффициент передачи при входном напряжении постоянного тока равен 0,93, а для переменного напряжения с частотой 500 кГц — 0,46. Максимальное управляющее напряжение менее 8 В.
Одиночный ключ. Для коммутации постоянного напряжения используется ключ на полевом транзисторе VT1 (рис. 6.10, а). В открытом состоянии, когда на затворе напряжение равно нулю, транзистор имеет сопротивление RОТK = 1/S = 500 Ом. Если положительное напряжение на затворе больше напряжения отсечки, транзистор находится в закрытом состоянии. В этом режиме сопротивление его может превышать сотни мегаом. Управление ключом осуществляется транзистором VT2. Когда он закрыт, положительное напряжение коллектора проходит через диод на затвор полевого транзистора. При появлении нулевого напряжения в коллекторе ключ открывается. Максимальная частота работы ключа равна 50 кГц. Входное напряжение, коммутируемое ключом, лежит в пределах от 10 до +5 В. Сопротивление нагрузки не менее 5 кОм. Точность передачи входного сигнал более 0,1%. Передаточная характеристика ключа показана на рис. 6.10,6. Управляющее напряжение положительной полярности должно быть больше 1В.
Рис. 6.10 Рис. 6.11
Модулятор с компенсацией помехи. При преобразовании постоянного входного сигнала в переменный существенные ограничения на минимальное значение входного сигнала накладывают помехи. Чтобы избавиться от этого, применяют схемы компенсации. Одна из таких схем представлена на рис. 6.11. В схеме модулятора ключ построен на транзисторе VT1. Усилитель собран на транзисторе VT2. Цепь компенсации состоит из двух резисторов R5 и R6.
Управляющий сигнал прямоугольной формы подается на затвор полевого транзистора. Из-за наличия паразитной емкости затвор — сток-напряжение коммутации проникает на выход в виде помехи и образует начальный уровень. Проникшее напряжение компенсируется импульсами управляющего напряжения, поступающими в. исток VT2 с делителя на резисторах R5 и R6 в противофазе по отношению к напряжению помехи. Компенсирующее напряжение устанавливается с помощью переменного резистора R5.
Схема с противофазной компенсацией. На рис. 6.12, а приведена схема коммутации аналогового сигнала, в которой применена цепь компенсации импульсных помех, возникающих из-за паразитных емкостей полевых транзисторов. Компенсация осуществляется подачей противофазного помехе сигнала на выход схемы через конденсатор С1. Амплитуда компенсирующего импульса устанавливается потенциометром R2. При частоте управляющих сигналов 1 кГц и амплитуде 5 В средний ток в нагрузке от импульсных помех может составлять 2 — 5 нА. Дрейф выходного напряжения при компенсации уменьшается в 10 — 20 раз. На схеме рис. 6.12,6 применен двухзатворный полевой транзистор. Компенсация импульсных помех осуществляется по второму (верхнему по схеме) затвору. При управляющем напряжении 1,5 В и при определенной температуре средний ток от импульсных помех можно свести к нулю. При изменении температуры дрейф тока в нагрузке составляет 0,2 — 0,5 нА/град.
Рис. 6.12
Рис. 6.13
Комбинированный модулятор. Модулятор (рис. 6.13) состоит из двух поочередно открывающихся транзисторов VT1 и VT2. Когда открыт транзистор VT1, входной сигнал поступает на затвор усилительного транзистора VT3, который имеет входное сопротивление около 100 МОм. В следующий момент транзистор VT1 закрывается, а транзистор VT2 открывается и на вход усилителя поступает нулевой уровень. В результате на выходе транзистора VT3 будет усиленный сигнал прямоугольной формы. Амплитудная характеристика всей схемы линейна в пределах от 10 мкВ до 1 мВ с коэффициентом передачи 0,8. Если на входе отсутствует сигнал, то на выходе возникают импульсные помехи, которые вызваны паразитными емкостями модулятора. Положительные импульсы имеют амплитуду около 25 мкВ, а отрицательные импульсы — более 100 мкВ. Эти помехи можно частично компенсировать с помощью цепочки R1, С1. Параметры этой цепочки находятся в прямой зависимости от паразитных емкостей транзисторов.
Балансный модулятор. Схема балансного модулятора (рис. 6.14) состоит из двух комбинированных модуляторов. В результате приведенного на схеме включения на выходах балансного модулятора возникают импульсные помехи одной полярности. Входные сигналы модулятора подаются на Вход 1 и Выход 2 дифференциального усилителя. Поскольку импульсные помехи поступают одновременно на оба усилителя, то в результате они будут частично скомпенсированы. Степень компенсации зависит от коэффициента подавления синфазных сигналов дифференциальным усилителем, а также от неравенства паразитных емкостей модулятора. Импульсные помехи на выходе усилителя могут составлять менее 1 мкВ. Максимальное значение входного сигнала 3 В. В схеме вместо транзисторов VT1 — VT4 целесообразно применить две интегральные микросхемы КПС202, в которых находятся по два подобранных полевых транзистора.
Рис. 6.14 Рис. 6.15
Балансный компенсатор помех. При подаче сигналов на вход ОУ (рис. 6.15) через полевой транзистор VT1 на выходе схемы возникают импульсные помехи, связанные с паразитными емкостями транзисторов. Чтобы избавиться от этого, на другой вход усилителя подаются аналогичные сигналы, снимаемые с другого полевого транзистора VT2. В результате на обоих входах ОУ возникают одинаковые помехи. Подстройка амплитуд этих помех осуществляется с помощью резистора R6. В итоге на выходе ОУ выбросы от переключения полевых Транзисторов не превышают 1 мВ. Для входного сигнала с амплитудой меньше 3 В точность передачи равна 0,5%.