Скачиваний:
233
Добавлен:
07.01.2022
Размер:
4.79 Mб
Скачать

6. Параметры контура

Эмнттерный умножитель добротности. Увеличение доброт­ности контура на низких частотах при малых значениях индуктив­ности осуществляется, за счет ПОС через резистор R2 в схеме рис. 2.25. Для Д2=оо, когда нет ОС, добротность контура на частоте 15 кГц равна 0,5. При сопротивлении R2 — =50 Ом добротность становится 15, а для R2==20 Ом добротность увеличи­вается до 30. Добротность контура мож­но регулировать, если в цепь эмиттера транзистора поставить потенциометр. Резонансная частота контура не ме­няется.

Активная индуктивность. Известно, что ток и напряжение на индуктивности связаны выражением

Следовательно, схемное интегрирование входного сигнала реализует выходной ток интегратора пропорцио­нальным индуктивности. В схеме на рис. 2.26 напряжение на выходе интегральной микросхемы DA1 определяется выражением

Рис. 2.25

где ki и K2 — коэффициенты усиления интегральных микросхем и R1+R2=R. Ток

Рис. 2.26

Поскольку К1 и K2->oo, то

Следовательно, экви-

валентные параметры будут равны

Если сопротивление rl имеет отрицательное значение, то при вклю­чении индуктивности в схему следует учитывать возможность са­мовозбуждения.

7. Преобразователи сопротивлений

Преобразователь «сопротивление — напряжение». Преобра­зователь (рис. 2.27) построен на основе стабилизатора тока, выпол­ненного на ОУ и транзисторе. В коллекторе транзистора поддержи­вается постоянный ток, который определяется отношением Iк=E2/R2. Этот ток создает радение напряжения на измеряемом резисторе Rx. Выходное напряжение прямо пропорционально измеряемому сопро­тивлению в диапазоне от 0 до 1 кОм. Для получения погрешности преобразования во всем диапазоне сопротивлений не более 0,05 % желательно последовательно с Rx в коллектор транзистора включить добавочное сопротивление 100 Ом. Чувствительность схемы состав­ляет 4 мВ/Ом. В диапазоне температур от 0 до +50 °С погрешность измерений равна 0,003 % на градус.

Рис. 2.27 Рис. 2.28

Рис. 2.29

Схема преобразования сопротивления. В схеме на рис. 2.28 за счет ПОС в ОУ осуществляется преобразование сопротивления. Ко­эффициент передачи по току определяется выражением

Iвх/Iн = R3/R2Rн/R1 или Rвх = Uвх/Iвх=Uвх/Iн(1 — a). при R3=R2, Rн/R1=a.

Для а=1 эквивалентное сопротивление равно бесконечности. Когда же а больше единицы, входное сопротивление становится от­рицательным.

Транзисторный делитель сопротивлений. Делитель сопротивле­ний, выполненный по схеме рис. 2.29, позволяет уменьшить сопро­тивление входного резистора в коэффициент передачи раз.

Начиная с входного тока 8 мкА, выходной ток практически пропорционален входному. Коэффициент передачи равен 500. Если на вход подан сигнал с амплитудой. UВх, то на выходе будет ток (Uвx/r)500. Следовательно, сопротивление цепи г уменьшается в 500 раз.

Делитель тока. Устройство (рис. 2.30) состоит из четырех диф­ференциальных пар транзисторов. Максимальный ток 8 мА протека­ет через VT9. Этот ток задается напряжением на базе и сопротивле­нием резистора R6. В эмиттерах транзисторов VT7 и VT8 общий ток разветвляется. Половина тока транзистора VT9 протекает через транзистор VT8, другая половина — через транзистор VT7 к следую­щей паре транзисторов, где ток также делится поровну. Коллекторный ток транзистора VT6 равен 2 мА. Последующие пары транзисто­ров осуществляют аналогичные операции. В результате на выходах схемы происходит пропорциональное деление токов. Поскольку па­раметры транзисторов могут отличаться, в базах включены потен­циометры, которые балансируют пары транзисторов. Вместо транзи­сторов в схеме можно применить интегральную микросхему К198НТ5, что значительно уменьшит габаритное размеры устройства.

Рис. 2.30