Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

элем-база от мих миха / Компл ампл

.doc
Скачиваний:
18
Добавлен:
09.02.2015
Размер:
51.2 Кб
Скачать

Компле́ксная амплитуда — комплексная величина, модуль и аргумент которой равны соответственно амплитуде и начальной фазе гармонического сигнала.

Пусть, имеется гармонический сигнал:

a(t) = Acos(ωt + φ)

((1))

Над сигналами, записанными в подобной форме, тяжело производить такие арифметические операции, как сложение двух сигналов, вычитание из одного сигнала другого сигнала, умножение сигнала на константу. С целью облегчения этих операций гармонические сигналы представляют в виде комплексного числа, модуль которого равен амплитуде сигнала, а угол - фазе сигнала. При этом оригинальный сигнал равен действительной части данного комплексного числа:

( )

здесь комплексной амплитудой гармонического сигнала является следующее выражение:

( )

Физический смысл

Алгебраическая форма

Если рассматривать комплексную амплитуду как комплексное число в алгебраической форме, то действительная часть соответствует амплитуде косинусной (синфазной) компоненты, а мнимая — амплитуде синусной (квадратурной) компоненты исходного сигнала. Так, для сигнала (1) имеем:

( )

Где

( )

Тригонометрическая форма

Если рассматривать комплексную амплитуду как комплексное число в тригонометрической форме, то модуль соответствует амплитуде исходного гармонического сигнала, а аргумент — сдвигу фазы исходного гармонического сигнала относительно сигнала cos(ωt).

Операции над комплексной амплитудой

К сигналам в пространстве комплексных амплитуд могут быть применены линейные операции. Другими словами, перечисленные ниже операции над комплексными амплитудами:

  • умножение комплексной амплитуды на константу

  • сложение комплексных амплитуд (соответствующих одной и той же частоте)

  • вычитание комплексных амплитуд (соответствующих одной и той же частоте)

  • интегрирование комплексной амплитуды по времени

  • дифференцирование комплексной амплитуды по времени

приводят к такому же результату, как если бы они были проделаны над соответствующими гармоническими сигналами, а затем от них взята комплексная амплитуда.

Ограничения

Несмотря на то, что в выражение для комплексной амплитуды не входит частота ω гармонического сигнала, следует помнить, что комплексная амплитуда описывает гармонический сигнал конкретной частоты. Поэтому в пространстве комплексных амплитуд недопустимы операции, которые:

  • принимают в качестве операндов комплексные амплитуды, описывающие гармонические сигналы разных частот.

  • меняют частоту гармонического сигнала или порождают новые частоты (все нелинейные операции, например, перемножение двух сигналов).

Применение

Комплексная амплитуда является полным и очень удобным способом описания гармонических сигналов, поскольку:

  • Характеризует и амплитуду, и фазу

  • Не содержит зависимости от времени

  • Позволяет использовать векторные диаграммы для анализа цепей на переменном токе

Использование комплексной амплитуды и импедансов позволяет свести задачу прохождения гармонического сигнала через линейную цепь (описывается системой дифференциальных уравнений) к более простой задаче, эквивалентной анализу цепи из резисторов на постоянном токе (описывается системой алгебраических уравнений).