
- •Мощные высокочастотные транзисторы
- •Предисловие
- •Глава первая особенности структуры мощных вч транзисторов
- •1.1. Параметры
- •1.2. Электрофизические характеристики различных областей транзисторной структуры
- •1.3. Выбор размеров и формы различных областей транзисторной структуры. Типы структур
- •2.2. Требования к корпусам и особенности конструкции
- •2.3. Особенности сборки
- •Глава тр етья параметры мощных вч транзисторов и методы их измерения
- •3.1. Система электрических параметров
- •3.2. Методы измерения статических параметров и вч параметров малого сигнала
- •3.3. Метод измерения Рвых
- •3.4. Метод измерения кур и nK
- •3.5. Метод измерения м3 и м5
- •3.6. Особенности измерения энергетических параметров линейных транзисторов
- •3.7. Согласующие устройства
- •3.8. Методика измерения zbx
- •3.9. Особенности аппаратуры для измерения энергетических параметров
- •3.10. Погрешности измерения энергетических параметров
- •Глава четвертая надежность мощных вч транзисторов
- •4.1. Основные виды и причины отказов
- •4.2. Конструктивные пути обеспечения надежности
- •4.3. Технологические пути обеспечения надежности
- •4.4. Устойчивость транзисторов к рассогласованию нагрузки
- •Глава пятая некоторые вопросы применения мощных вч транзисторов
- •5.1. Общие сведения об устройствах на мощных вч транзисторах
- •5.2. Высокочастотные усилители мощности
- •5.3. Усилители на основе мощных автогенераторов
- •5.4. Автоматика и управление в усилителях мощности
- •5.5 Конструкция усилителей мощности
3.7. Согласующие устройства
Как уже было сказано, понятие согласования не может быть применимо при описании работы мощного ВЧ транзистора. Однако при дальнейшем рассмотрении мы будем продолжать называть (как это принято в литературе) соответствующее устройство согласующим, хотя правильнее было бы называть его трансформатором сопротивлений. Остановимся коротко на различных вариантах согласующих устройств [32], наиболее распространенные примеры которых приведены на рис. 3.13. По вариантам включения элементов различают Г, Т и П-образные схемы согласующих устройств.
В процессе производства, где энергетические параметры измеряются в определенном выбранном устройстве при фиксированной настройке не имеет значения, какой из вариантов устройства используется в измерительной установке. Однако, когда предстоит выбрать схему согласующего устройства (например, при разработке нового типа транзистора), правильное решение вопроса помогает быстро провести оптимальную настройку.
Выбор варианта согласующего устройства в первую очередь зависит от того, по какому параметру имеются наименьшие запасы у измеряемого типа транзистора. Даже если каждая из указанных схем может обеспечить одинаковые значения Zг.Экв и Zн.экв, условия работы по высшим гармоникам обязательно будут различны, что может повлиять на результаты измерений.
В измерительных схемах на рис. 3.13,а и б сопротивления на входе транзистора для высших гармоник (если эти схемы используются только в коллекторной Цепи) будут большими по сравнению со схемой на tpac. 3.13,e и, следовательно, форма тока будет близка к синусоидальной при несинусоидальном напряжении.
Рис. 3.13. Согласующие устройства:
а — измерительная схема с Т-образным входным и Г-образным выходным согласующими устройствами; б — измерительная схема с П-образным входным и Т-образным выходным согласующими устройствами; 8 — измерительная схема с Т-образным входным и П-образным выходным согласующими устройствами
Для схемы на рис. 3.13,в положение будет обратным. С этой точки зрения для выявления лучших линейных свойств транзистора целесообразно использовать на входе Т-образную схему, так как она позволяет получить более близкую к синусоидальной форму входного тока, а на выходе — П-образную, обеспечивающую более близкую к синусоидальной форму выходного напряжения. Помимо этого основного фактора обычно учитываются и другие особенности согласующих схем. Так, когда необходимо производить настройку, выбор схемы может определяться удобством поиска оптимальной настройки.
Для оценки различных согласующих устройств с этой точки зрения построим графическое изображение зависимости эквивалентного сопротивления каждого согласующего устройства от изменения емкости одного из переменных конденсаторов при постоянной емкости другого и при нагрузке RH (на входе или выходе согласующего устройства в зависимости от места его включения по отношению к транзистору). Построенные таким образом регулировочные кривые для разных типов схем показаны на рис. 3.14 — 3.16.
Рис. 3.14. Зависимость сопротивления 2ЭКВ от емкостей конденсаторов С1 и С2 для Т-образной схемы
Рис. 3.15. Зависимость сопротивления 2ЭКВ от емкостей конденсаторов С1 и С2 для Г-образной схемы
Очевидно, что наиболее удобным следует считать семейство регулировочных кривых, которые располагаются параллельно осям мнимых и действительных значений. При этом изменение емкости каждого переменного конденсатора по отдельности позволяет независимо изменять активную и реактивную составляющие и, следовательно, быстрее найти необходимое сопротивление.
Рис 3.16. Зависимость сопротивления гэкв от емкостей конденсаторов С1 и С2 для П-образной схемы
В наибольшей степени к такому виду приолижаются характеристики Г-образной схемы (см. рис. 3.15). Практическое ее удобство заключается в том, что выбор активной составляющей сопротивления достигается изменением емкости только одного конденсатора С1. С помощью емкости второго С2 подбирается только суммарная реактивная составляющая сопротивления. В этом смысле Т-образная схема не обладает необходимым качеством.
Как следует из регулировочных кривых, при изменении каждого из переменных конденсаторов изменяются одновременно активная и реактивная составляющие сопротивления. Наихудшей для настройки является П-образная схема, так как ее регулировочные кривые в некоторой области имеют вид расходящегося пучка (заштрихованная часть на рис. 3.16). Таким образом, наиболее предпочтительна с точки зрения быстроты нахождения оптимального сопротивления Г-образная схема.
Рассмотрим еще один фактор, также имеющий существенное значение при выборе согласующего устройства. Очень часто для получения необходимого сопротивления требуется включение в согласующее устройство конденсаторов больших номиналов. Реальные же постоянные и переменные конденсаторы обладают собственной индуктивностью. Если частота измерений велика, то индуктивное сопротивление конденсаторов может стать сравнимым с емкостным.
Расчет показывает, что Т-образная схема согласующего устройства позволяет получить одни и те же эквивалентные сопротивления с меньшими номиналами конденсаторов, нежели Г-образная схема. С этой точки зрения, а также учитывая остальные факторы, на низких частотах в качестве выходного согласующего устройства целесообразно использовать Г-образную схему, а на высоких — Т-образную. В качестве же входного согласующего устройства, как было указано ранее, используется обычно Т-образная схема.