
- •Матью Мэндл
- •200 Избранных схем электроники Редакция литературы по информатике и электронике
- •© Перевод на русский язык, «Мир», 1985, 1980 предисловие редактора перевода
- •Предисловие
- •Глава 1 усилители звуковой частоты и видеоусилители
- •1.1. Усилители с общим эмиттером и общим истоком
- •1.2. Усилители с общей базой и общим затвором
- •3.3. Усилители с общим коллектором и общим стоком
- •1.4. Классификация усилителей
- •1.5. Типы связи между каскадами
- •1.6. Цепи развязки
- •1.7. Регуляторы тембра
- •1.8. Отрицательная обратная связь
- •1.9. Видеоусилители
- •1.10. Фазоинверторы
- •1.11. Двухтактные усилители
- •Усилители специального назначения
- •2.1. Схема Дарлингтона
- •2.2. Операционные усилители
- •2.3. Дифференциальные усилители
- •2.4. Усилитель сигнала выключения канала цветности
- •2.5. Полосовой усилитель сигналов цветности
- •2.6. Усилитель сигналов цветности
- •2.7. Схема стробирования цветовой вспышки
- •2.8. Магнитные усилители
- •2.9. Магнитный усилитель с самонасыщением
- •2.10. Двухтактный магнитный усилитель
- •2.11. Выходные усилители блоков кадровой и строчной разверток
- •2.12. Усилитель чм-пилот-сигнала
- •Глава 3 усилители промежуточной и высокой частоты
- •3.1. Принципиальная схема упч
- •3.2. Заграждающие фильтры входного каскада упч
- •3.3. Каскады упч на полевых транзисторах
- •3.5. Линейный усилитель класса в
- •3.6. Однотактный усилитель класса с
- •3.7. Двухтактный усилитель класса с
- •3.8. Умножители частоты
- •Глава 4 генераторы
- •4.1. Генератор по схеме Армстронга
- •4.2. Генератор с регулируемой частотой
- •4.3. Генератор по схеме Хартли
- •4.4. Генератор по схеме Колпитса
- •4.5. Кварцованный генератор
- •4.6. Генератор поднесущей с фапч
- •4.7. Мультивибратор
- •4.8. Мультивибратор кадровой развертки
- •4.9. Блокинг-генератор
- •4.10. Блокииг-генератор кадровой развертки
- •4.11. Блокинг-генератор строчной развертки
- •Глава 5 фильтры и аттенюаторы (ослабители)
- •5.1. Общие положения
- •5.2. Фильтры нижних частот типа k
- •5.3. Фильтры нижних частот типа m
- •5.4. Фильтры верхних частот типа k
- •5.5. Фильтры верхних частот типа т
- •5.6. Сбалансированные фильтры
- •5.7. Полосовые фильтры
- •5.8. Заграждающие фильтры
- •5.9. Аттенюаторы (ослабители)
- •5.10. Типы переменных аттенюаторов
- •5.11. Типы постоянных аттенюаторов
- •5.15. Мостовые т- и н-образные аттенюаторы
- •5.16. Фильтр частичного подавления одной боковой полосы
- •Глава 6 модуляционные устройства
- •6.1. Основные виды модуляции
- •6.2. Режим однотактной am
- •6.3. Режим двухтактной am
- •6.4. Ширина полосы чм
- •6.5. Коэффициенты частотной модуляции
- •6.6. Обеспечение стабильности частоты несущей при чм
- •6.7. Балансный модулятор
- •6.8. Предварительная коррекция
- •6.9. Ввод импульсов синхронизации в состав телевизионного сигнала
- •6.10. Ввод кадровых синхроимпульсов
- •6.11. Схемы объединения сигналов
- •Глава 7 демодуляторы и схемы арг, ару и другие
- •7.1. Детектор ам-сигналов
- •7.2. Регенеративный детектор
- •7.3. Фазовый детектор
- •7.4. Дискриминатор чм-сигналов
- •7.5. Детектор отношений чм-сигналов
- •7.6. Схема ослабления звуковых сигналов более высоких частот
- •7.7. Видеодетектор
- •7.8. Автоматическая регулировка громкости
- •7.9. Основная схема ару
- •7.10. Ключевая схема ару
- •7.11. Автоматическая подстройка частоты
- •7.12. Автоматическая регулировка усиления сигналов цветности
- •7.13. Демодулятор цветоразностных сигналов в — y и r — y
- •Глава 8 цифровые схемы
- •8.1. Общие положения
- •8.2. Статический триггер
- •8.3. Схема или
- •8.4. Схемы или-не, и, и-не
- •8.5. Сложные логические схемы
- •8.6. Резисторно-транзисторные и диодно-транзисторные логические схемы
- •8.7. Логика с непосредственными связями
- •6.8. Схема исключающее или
- •8.9. Представление двоичного числа в прямом hi обратном кодах
- •Глава 9 мостовые схемы
- •9.1. Мостик Уитстона
- •9.2. L и с-мостики Уитстона
- •9.3. Мост Овена
- •9.4. Мост Максвелла
- •9.5. Мост Вина
- •9.6. Резонансный мост
- •9.7. Мост Хея
- •9.8. Мост Шеринга
- •9.9. Детектор мостового типа
- •9.10. Мостовой выпрямитель
- •9.11. Мостовой фазовый детектор
- •9.12. Мостовой антенный переключатель
- •Глава 10 источники питания и схемы управления
- •10.1. Общие сведеяшя об источниках питания
- •10.2. Однополупериодный выпрямитель
- •10.3. Двухполупериодный выпрямитель
- •10.4. Удвоитель напряжения
- •10.5. Утроитель напряжения
- •10.6. Высоковольтные схемы
- •10.7. Мостовой выпрямитель
- •10.8. Стабилизаторы напряжения
- •10.9. Прерыватели hi преобразователи
- •10.10. Схемы с регулируемым напряжением
- •10.11. Схема с тиристорами
- •10.12. Фазосдвигающая цепь
- •10.13. Схема с игнитроном
- •10.14. Двухполупериодная схема с игнитронами
- •Глава 11 цепи преобразования формы сигналов
- •11.1. Интегрирующая цепь
- •11.2. Дифференцирующая цепь
- •11.3. Интегрирующе-дифференцирующая цепь
- •11.4. Последовательный диодный ограничитель
- •11.5. Параллельный диодный ограничитель
- •11.6. Двусторонний ограничитель
- •11.7. Выравнивание амплитуд
- •11.8. Схемы фиксации уровня
- •11.9. Формирование пилообразных сигналов
- •11.10 Преобразование пилообразного напряжения в пилообразный ток
- •Глава 12 реактансные схемы
- •12.1. Основная схема с управляемым реактивным сопротивлением
- •12.2. Реактансная схема rс-типа
- •12.3. Реактансная схема rl-типа.
- •12.4. Схема подстройки с двумя варакторами
- •12.5. Схема с одним варактором
- •Глава 13 специальные устройства и системы
- •13.1. Делитель частоты на блокинг-генераторе
- •13.2. Делитель частоты накопительного типа
- •13.3. Удвоитель частоты
- •13.4. Одностабильный мультивибратор
- •13.5. Триггер Шмитта
- •13.6. Селектор синхроимпульсов
- •13.7. Индикатор настройки
- •13.8. Система переключения рода работы магнитофона
- •13.9. Схема гашения
- •13.10 Система переключения am- и чм-сигналов в стереоприемнике
- •13.11. Системы управления
- •13.12 Сельсины
- •13.13. Дифференциальные сельсины
- •13.14. Электромашинный усилитель — амплидин
- •13.15. Схемы с фотоэлементами
- •13.16. Основные измерительные схемы
- •Глава 14 интегральные схемы
- •14.1. Особенности интегральных схем
- •14.2. Применение интегральных схем в модулях
- •14.3. Многоэмиттерные транзисторы в схемах ттл-типа
- •14.4. Интегральные схемы с дополняющими моп-транзисторами
- •14.5. Логические схемы инжекционного типа
- •14.6. Схема вентиля или-не инжекционного типа
- •14.7. Схема фиксации с диодами Шоттки
- •Глава 15 функциональные схемы передающих и приемных устройств
- •15.1. Передатчик ам-сигналов
- •15.2. Одноканальный передатчик с чм
- •15.3. Многоканальный передатчик с чм
- •15.4. Телевизионный передатчик
- •15.5. Приемник ам-сигналов
- •15.6. Одноканальный приемник чм-сигналов
- •15.7. Многоканальный приемник чм-сигналов
- •15.8. Телевизионный приемник
- •Глава 1. Усилители звуковой частоты и видеоусилители
- •Глава 2. Усилители специального назначения
- •Глава 3. Усилители промежуточной и высокой частоты
- •Глава 4. Генераторы
- •Глава 5. Фильтры и аттенюаторы (ослабители)
- •Глава 6. Модуляционные устройства
- •Глава 7. Демодуляторы и схемы арг, ару и другие
- •Глава 8. Цифровые схемы
- •Глава 9. Мостовые схемы
- •Глава 10. Источники питания и схемы управления
- •Глава 11. Цепи преобразования формы сигналов
- •Глава 12. Реактансные схемы
- •Глава 13. Специальные устройства и системы
- •Глава 14. Интегральные схемы
- •Глава 15. Функциональные схемы передающих и приемных устройств
- •200 Избранных схем электроники
13.12 Сельсины
Сельсины — это устройства, похожие на небольшие электродвигатели, но в отличие от последних не вращающиеся непрерывно при подаче на них электроэнергии. Эти устройства выполняют функцию преобразования, т. е. могут преобразовать информацию о положении в электрический сигнал, при помощи которого можно дистанционно воспроизвести идентичное механическое состояние. Таким образом, сельсины, или синхронные устройства, могут преобразовывать механическую величину в электрическую и наоборот.
Сельсины благодаря их передаточным характеристикам можно использовать для передачи данных путем преобразования информации о положении вала в электрические сигналы и передачи их по проводам. В месте приема при помощи этих сигналов другой вал устанавливается в положение, соответствующее положению первого вала. Это позволяет осуществлять синхронное вращение валов без механического соединения между яими. Следует, однако, иметь в виду, что сельсины не могут развивать большого вращающего момента. Поэтому в некоторых случаях вращающий момент на втором валу требуется усиливать с тем, чтобы он имел достаточную величину для преодоления нагрузки на валу. Используемые для этой цели устройства называют сервомеханизмами. В тех случаях, когда требуется дистанционно воспроизвести только показание какой-либо шкалы, усиливать вращающий момент вала не требуется.
Сельсины бывают трех основных типов. Сельсины, которые вырабатывают сигнал посредством изменения угла поворота, называют генератором или сельсин-датчиком. Сельсин, расположенный на .некотором расстоянии от первого и принимающий его сигналы, называют мотором или сельсин-приемником.
Если между генератором и мотором применяется промежуточный сельсин, то его называют дифференциальным сельсином. Схема и рабочие характеристики дифференциального сельсина .будут рассмотрены ниже.
Синхрогенераторы и моторы имеют по пять внешних выходов (рис. 13.11,а). Соединение генератора и мотора показано на рис. 13.11,6. Заметим, что символы мотора и генератора идентичны и соответствующие выводы, обозначенные через S, соединяются между собой. Питающее напряжение подводится к выводам обмотки ротора, обозначенным Ri и R2. Обмотка ротора эквивалентна первичной обмотке трансформатора. Три вторичные обмотки обозначены на рисунке символами 5Ь 52 и 53. Эти обмотки расположены в статоре и сдвинуты относительно друг друга на 120°. (Пространственный сдвиг обмоток не означает, что используется трехфазный ток; для питания здесь применяется однофазный ток.)
Если сельсин-датчик и сельсин-приемник соединить между собой, как показано на рис. 13.11., б, и вал сельсин-датчика установить в нулевое положение, то вал сельсин-приемника также займет это положение благодаря воздействию электрических сигналов, поступающих в сельсин-датчик. Заметим, что для соединения сельсин-датчика с сельсин-приемником требуются три провода. В нулевом положении осевой полюс обмотки ротора совмещен с осевым полюсом обмотки статора S2, как показано на рисунке. В этом положении имеет место трансформаторное действие, и напряжение 120 В, подаваемое на первичную обмотку (обмотку ротора), индуцирует на обмотке статора 52 напряжение 50 В. В этом положении напряжения, наводимые в обмотках Si и 53, будут меньше и равны 25 В. Далее между сельсин-датчиком и сельсин-приемником должно установиться равновесие напряжений. При этом ротор сельсин-приемника займет точно такое же положение, что и ротор сельсин-датчика. Следовательно, ось первичной обмотки сельсин-приемника совместится с осью обмотки 52 статора. В этом положении между сельсин-датчиком и сельсин-приемником ни по одному из трех проводов не будет протекать ток. Если вал сельсин-датчика изменит свое положение, то будет иметь место разбаланс напряжений между обмотками сельсин-датчика и сельсин-приемника, в результате чего ротор сельсин-приемника займет то же положение, что и ротор сельсин-датчика. При этом вновь установится равновесие напряжений. В течение времени, когда ротор сельсин-приемника движется в положение, соответствующее положению ротора сельсин-датчика, в соединительных проводах протекает ток. Когда же роторы сельсин-приемника и сельсин-датчика имеют одинаковое положение, протекание тока прекращается. Протекание тока и, следовательно, потребление энергии необходимо для создания вращающего момента, который восстанавливает ротор сельсин-приемника в положение, соответствующее положению ротора сельсин-датчика.
Рис. 13.11. Вид сельсина (с) и схема соединения сельсин-датчика и сельсин-приемника (б).