
- •Матью Мэндл
- •200 Избранных схем электроники Редакция литературы по информатике и электронике
- •© Перевод на русский язык, «Мир», 1985, 1980 предисловие редактора перевода
- •Предисловие
- •Глава 1 усилители звуковой частоты и видеоусилители
- •1.1. Усилители с общим эмиттером и общим истоком
- •1.2. Усилители с общей базой и общим затвором
- •3.3. Усилители с общим коллектором и общим стоком
- •1.4. Классификация усилителей
- •1.5. Типы связи между каскадами
- •1.6. Цепи развязки
- •1.7. Регуляторы тембра
- •1.8. Отрицательная обратная связь
- •1.9. Видеоусилители
- •1.10. Фазоинверторы
- •1.11. Двухтактные усилители
- •Усилители специального назначения
- •2.1. Схема Дарлингтона
- •2.2. Операционные усилители
- •2.3. Дифференциальные усилители
- •2.4. Усилитель сигнала выключения канала цветности
- •2.5. Полосовой усилитель сигналов цветности
- •2.6. Усилитель сигналов цветности
- •2.7. Схема стробирования цветовой вспышки
- •2.8. Магнитные усилители
- •2.9. Магнитный усилитель с самонасыщением
- •2.10. Двухтактный магнитный усилитель
- •2.11. Выходные усилители блоков кадровой и строчной разверток
- •2.12. Усилитель чм-пилот-сигнала
- •Глава 3 усилители промежуточной и высокой частоты
- •3.1. Принципиальная схема упч
- •3.2. Заграждающие фильтры входного каскада упч
- •3.3. Каскады упч на полевых транзисторах
- •3.5. Линейный усилитель класса в
- •3.6. Однотактный усилитель класса с
- •3.7. Двухтактный усилитель класса с
- •3.8. Умножители частоты
- •Глава 4 генераторы
- •4.1. Генератор по схеме Армстронга
- •4.2. Генератор с регулируемой частотой
- •4.3. Генератор по схеме Хартли
- •4.4. Генератор по схеме Колпитса
- •4.5. Кварцованный генератор
- •4.6. Генератор поднесущей с фапч
- •4.7. Мультивибратор
- •4.8. Мультивибратор кадровой развертки
- •4.9. Блокинг-генератор
- •4.10. Блокииг-генератор кадровой развертки
- •4.11. Блокинг-генератор строчной развертки
- •Глава 5 фильтры и аттенюаторы (ослабители)
- •5.1. Общие положения
- •5.2. Фильтры нижних частот типа k
- •5.3. Фильтры нижних частот типа m
- •5.4. Фильтры верхних частот типа k
- •5.5. Фильтры верхних частот типа т
- •5.6. Сбалансированные фильтры
- •5.7. Полосовые фильтры
- •5.8. Заграждающие фильтры
- •5.9. Аттенюаторы (ослабители)
- •5.10. Типы переменных аттенюаторов
- •5.11. Типы постоянных аттенюаторов
- •5.15. Мостовые т- и н-образные аттенюаторы
- •5.16. Фильтр частичного подавления одной боковой полосы
- •Глава 6 модуляционные устройства
- •6.1. Основные виды модуляции
- •6.2. Режим однотактной am
- •6.3. Режим двухтактной am
- •6.4. Ширина полосы чм
- •6.5. Коэффициенты частотной модуляции
- •6.6. Обеспечение стабильности частоты несущей при чм
- •6.7. Балансный модулятор
- •6.8. Предварительная коррекция
- •6.9. Ввод импульсов синхронизации в состав телевизионного сигнала
- •6.10. Ввод кадровых синхроимпульсов
- •6.11. Схемы объединения сигналов
- •Глава 7 демодуляторы и схемы арг, ару и другие
- •7.1. Детектор ам-сигналов
- •7.2. Регенеративный детектор
- •7.3. Фазовый детектор
- •7.4. Дискриминатор чм-сигналов
- •7.5. Детектор отношений чм-сигналов
- •7.6. Схема ослабления звуковых сигналов более высоких частот
- •7.7. Видеодетектор
- •7.8. Автоматическая регулировка громкости
- •7.9. Основная схема ару
- •7.10. Ключевая схема ару
- •7.11. Автоматическая подстройка частоты
- •7.12. Автоматическая регулировка усиления сигналов цветности
- •7.13. Демодулятор цветоразностных сигналов в — y и r — y
- •Глава 8 цифровые схемы
- •8.1. Общие положения
- •8.2. Статический триггер
- •8.3. Схема или
- •8.4. Схемы или-не, и, и-не
- •8.5. Сложные логические схемы
- •8.6. Резисторно-транзисторные и диодно-транзисторные логические схемы
- •8.7. Логика с непосредственными связями
- •6.8. Схема исключающее или
- •8.9. Представление двоичного числа в прямом hi обратном кодах
- •Глава 9 мостовые схемы
- •9.1. Мостик Уитстона
- •9.2. L и с-мостики Уитстона
- •9.3. Мост Овена
- •9.4. Мост Максвелла
- •9.5. Мост Вина
- •9.6. Резонансный мост
- •9.7. Мост Хея
- •9.8. Мост Шеринга
- •9.9. Детектор мостового типа
- •9.10. Мостовой выпрямитель
- •9.11. Мостовой фазовый детектор
- •9.12. Мостовой антенный переключатель
- •Глава 10 источники питания и схемы управления
- •10.1. Общие сведеяшя об источниках питания
- •10.2. Однополупериодный выпрямитель
- •10.3. Двухполупериодный выпрямитель
- •10.4. Удвоитель напряжения
- •10.5. Утроитель напряжения
- •10.6. Высоковольтные схемы
- •10.7. Мостовой выпрямитель
- •10.8. Стабилизаторы напряжения
- •10.9. Прерыватели hi преобразователи
- •10.10. Схемы с регулируемым напряжением
- •10.11. Схема с тиристорами
- •10.12. Фазосдвигающая цепь
- •10.13. Схема с игнитроном
- •10.14. Двухполупериодная схема с игнитронами
- •Глава 11 цепи преобразования формы сигналов
- •11.1. Интегрирующая цепь
- •11.2. Дифференцирующая цепь
- •11.3. Интегрирующе-дифференцирующая цепь
- •11.4. Последовательный диодный ограничитель
- •11.5. Параллельный диодный ограничитель
- •11.6. Двусторонний ограничитель
- •11.7. Выравнивание амплитуд
- •11.8. Схемы фиксации уровня
- •11.9. Формирование пилообразных сигналов
- •11.10 Преобразование пилообразного напряжения в пилообразный ток
- •Глава 12 реактансные схемы
- •12.1. Основная схема с управляемым реактивным сопротивлением
- •12.2. Реактансная схема rс-типа
- •12.3. Реактансная схема rl-типа.
- •12.4. Схема подстройки с двумя варакторами
- •12.5. Схема с одним варактором
- •Глава 13 специальные устройства и системы
- •13.1. Делитель частоты на блокинг-генераторе
- •13.2. Делитель частоты накопительного типа
- •13.3. Удвоитель частоты
- •13.4. Одностабильный мультивибратор
- •13.5. Триггер Шмитта
- •13.6. Селектор синхроимпульсов
- •13.7. Индикатор настройки
- •13.8. Система переключения рода работы магнитофона
- •13.9. Схема гашения
- •13.10 Система переключения am- и чм-сигналов в стереоприемнике
- •13.11. Системы управления
- •13.12 Сельсины
- •13.13. Дифференциальные сельсины
- •13.14. Электромашинный усилитель — амплидин
- •13.15. Схемы с фотоэлементами
- •13.16. Основные измерительные схемы
- •Глава 14 интегральные схемы
- •14.1. Особенности интегральных схем
- •14.2. Применение интегральных схем в модулях
- •14.3. Многоэмиттерные транзисторы в схемах ттл-типа
- •14.4. Интегральные схемы с дополняющими моп-транзисторами
- •14.5. Логические схемы инжекционного типа
- •14.6. Схема вентиля или-не инжекционного типа
- •14.7. Схема фиксации с диодами Шоттки
- •Глава 15 функциональные схемы передающих и приемных устройств
- •15.1. Передатчик ам-сигналов
- •15.2. Одноканальный передатчик с чм
- •15.3. Многоканальный передатчик с чм
- •15.4. Телевизионный передатчик
- •15.5. Приемник ам-сигналов
- •15.6. Одноканальный приемник чм-сигналов
- •15.7. Многоканальный приемник чм-сигналов
- •15.8. Телевизионный приемник
- •Глава 1. Усилители звуковой частоты и видеоусилители
- •Глава 2. Усилители специального назначения
- •Глава 3. Усилители промежуточной и высокой частоты
- •Глава 4. Генераторы
- •Глава 5. Фильтры и аттенюаторы (ослабители)
- •Глава 6. Модуляционные устройства
- •Глава 7. Демодуляторы и схемы арг, ару и другие
- •Глава 8. Цифровые схемы
- •Глава 9. Мостовые схемы
- •Глава 10. Источники питания и схемы управления
- •Глава 11. Цепи преобразования формы сигналов
- •Глава 12. Реактансные схемы
- •Глава 13. Специальные устройства и системы
- •Глава 14. Интегральные схемы
- •Глава 15. Функциональные схемы передающих и приемных устройств
- •200 Избранных схем электроники
13.2. Делитель частоты накопительного типа
Типичная схема импульсного делителя частоты накопительного типа изображена на рис. 13.2. Здесь также используется блокинг-генератор, но он работает не в режиме автоколебаний, а в ждущем режиме: генератор вырабатывает выходной импульс только после того, как на его вход поступит определенное, заранее заданное число импульсов. Следовательно, при такой схеме построения релаксатор, в частности блокинг-генератор, работает в качестве делителя частоты следования импульсов или в качестве счетчика импульсов. Характеристики работы схемы определяются длительностью входных импульсов и параметрами схемы.
Рис. 13.2. Схема делителя частоты накопительного типа.
До поступления определенного числа импульсов в схему транзистор находится в закрытом состоянии, что обусловлено действием положительного напряжения, подаваемого на эмиттер. При помощи переменного резистора Ri можно устанавливать нужную величину напряжения, подаваемого на эмиттер, и таким образом регулировать порог отпирания транзистора, который является основным параметром такой схемы делителя частоты следования импульсов. Предположим, что уровень отсечки транзистора равен 0,5 В, а при помощи переменного резистора на эмиттер подается напряжение 40 В. При этих условиях запирающее напряжение смещения превысит напряжение отсечки на 39,5 В. При подаче первого входного импульса через конденсатор Сь диод Д2 и конденсатор С2 будет протекать ток сигнала, причем электроны будут двигаться к конденсатору С2 в направлении, показанном стрелками. В результате лротекания тока конденсаторы С1 и С2 будут заряжаться, но из-за большой постоянной времени цепи заряда и сравнительно малой длительности импульса оба конденсатора за время действия импульса успеют зарядиться только до незначительной величины напряжения. Следовательно, после первого импульса конденсатор С2 окажется заряженным лишь на небольшую часть амплитуды напряжения входного импульса. Хотя это напряжение на конденсаторе С2 приложено между базой и эмиттером транзистора, пока оно лишь незначительно уменьшает уровень обратного смещения транзистора.
В течение интервала времени до прихода второго импульса заряд на конденсаторе С2 сохраняется, поэтому напряжение е& между базой и землей сохранит уровень, равный приросту напряжения на конденсаторе С2 (рис. 13.2,6). На рис. 13.2,6 входные импульсные сигналы обозначены как евх; первый импульс находится под цифрой 1.
Так как конденсатор Ci заряжен с указанной на рисунке полярностью, он будет разряжаться через диод Д1 и входную цепь. На конденсаторе С2 заряд будет сохраняться, поскольку он не может разряжаться ни через диоды, ни через закрытый транзистор.
С приходом второго импульса на вход схемы диод Д2 открывается вновь и конденсатор С2 получает дополнительный заряд. Как и в предыдущем случае, поскольку длительность импульса мала по сравнению с постоянной времени схемы, конденсатор С2 получит лишь незначительный добавочный заряд, Во время интервала между вторым и третьим импульсами напряжение на конденсаторе С2 будет сохраняться (рис. 13.2,6). Таким образом, последовательное нарастание и сохранение напряжения между базой и землей приводит к тому, что это напряжение имеет ступенчатый вид. Так как конденсатор С? заряжается по экспоненциальному закону, то каждая последующая ступенька напряжения на нем уменьшается (рис. 13.2,6).
Верхняя обкладка конденсатора С2 соединена с базой транзистора через первичную обмотку трансформатора. Следовательно, по мере нарастания напряжения на конденсаторе обратное смещение на транзисторе будет уменьшаться. Таким образом, если напряжение отсечки транзистора составляет 0,5 В, как было указано ранее, а при помощи переменного резистора Ri потенциал эмиттера устанавливается равным 40 В, то для отпирания транзистора напряжение еб должно достигнуть уровня 39,5 В. Когда напряжение е& достигнет этого уровня, транзистор откроется и в этом состоянии будет иметь малое внутреннее сопротивление. Тогда конденсатор С2 начнет разряжаться через транзистор. Транзистор будет находиться в открытом состоянии до тех пор, пока напряжение на конденсаторе С2 в процессе разряда не снизится настолько, что смещение, задаваемое резистором Ri, не приведет опять к запиранию транзистора. Во время нарастания и спада тока через транзистор при его открывании и закрывании на третьей обмотке трансформатора формируется выходной сигнал.
Таким образом, схема выполняет функцию деления частоты следования импульсов, так как при заданном числе входных импульсов она вырабатывает только один выходной импульс.
Если при помощи переменного резистора на эмиттере транзистора задается напряжение 20 В, то транзистор откроется при достижении напряжения на базе, равного 19,5 В. Следовательно, при помощи переменного резистора можно регулировать коэффициент деления схемы.