Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Схемы, Конструкции / 200 избранных схем электроники.doc
Скачиваний:
184
Добавлен:
06.01.2022
Размер:
2.25 Mб
Скачать

12.3. Реактансная схема rl-типа.

В реактансных схемах вместо конденсатора можно приме­нять катушку индуктивности. В реактансной схеме на рис. 12.3, а реактивная цепь образована резистором Ri и катушкой индук­тивности L1. Здесь сопротивление Ri выбирается таким образом, чтобы его величина была примерно в 10 раз больше реактив­ного сопротивления L1. При этом условии ток IRL через цепоч­ку R1 и L1 фактически совпадает по фазе с приложенным напряжением Е0 от автогенератора (рис. 12.3,6). Однако, посколь­ку напряжение на затвор транзистора подается только с индук­тивности L1, напряжение Е3 на затворе будет опережать ток IRL на 90°. Влияние этого напряжения на ток стока 1С показано на рис. 12.3, б. Следовательно, ток стока будет опережать на­пряжение Е0 генератора на 90°, т. е. схема имеет емкостный характер (как и схема на рис. 12.2,а). Формулы, аналогичные приведенным для схемы рис. 12.2, а, при надлежащей замене емкости на индуктивность справедливы и в данном случае. Разделительный конденсатор C1 служит для того, чтобы напря­жение стока не подавалось на затвор через резистор Ri и не оказывало влияния на величину эквивалентной емкости.

Рис. 12.3. Реактансные схемы RL-типа.

Еще один вариант реактансной схемы изображен на рис. 12.3, в. Здесь индуктивность включена между стоком и затвором. Так как в этом случае постоянное напряжение со стока через индуктивность может подаваться на затвор, необходимо применить разделительный конденсатор С1. Этот конденсатор имеет большую емкость и, следовательно, небольшое сопротив­ление на частоте сигнала; поэтому для напряжения сигнала он практически представляет собой короткозамкнутую цепь. Благо­даря этому напряжение сигнала с автогенератора подается на индуктивно-резистивную цепь так же, как и в других рассмот­ренных схемах.

В схеме на рис. 12.3, в индуктивность L1 выбирается так, чтобы ее реактивное сопротивление на частоте сигнала было в 10 раз больше сопротивления резистора R1. Поэтому ток IRL в цепи обратной связи будет отставать от напряжения Е0 авто­генератора на 90° (рис. 12.3,г). Этот ток протекает также через резистор R1 и определяет напряжение ERl на резисторе, которое совпадает по фазе с током IRL (рис. 12.3, г). Ток стока Iс имеет ту же фазу, что и напряжение ERI или Е3 (рис. 12.3, г). Отсю­да следует, что напряжение Е0 автогенератора опережает ток стока на 90°. Следовательно, данная реактансная схема имеет индуктивный характеру причем величина эквивалентной индук­тивности и ее реактивное сопротивление рассчитываются по формулам, подобным приведенным для схемы на рис. 12.2, в. Таким образом, путем воздействия управляющего напряжения-на резистор Ri можно управлять величиной эквивалентной ин­дуктивности и соответственно изменять частоту автогенератора,, как и в других рассмотренных реактансных схемах.

12.4. Схема подстройки с двумя варакторами

Как указывалось в разд. 12.1, варактор обладает емкостью, величина которой зависит от приложенного к нему обратного напряжения. Типичная схема с варакторами, используемая для подстройки приемника, показана на рис. 12.4, где параллельно резонансному контуру C1L1 включены два варакторных диода. В этой схеме диоды Д1 и Д2 включены встречно для обеспече­ния более высокой стабильности и линейности. Однако часто-применяются схемы только с одним варакторным диодом.

Схема, показанная на рисунке, представляет собой высоко­частотный резонансный усилитель на полевом транзисторе, кон­тур которого настраивается в резонанс с частотой приходящего сигнала. Переменный конденсатор Ci может быть подстроечным и использоваться для подстройки в диапазоне одной станции или же выполнять роль основного конденсатора настройки, дей­ствующего независимо от варакторных диодов. В некоторых приемниках применение селекторного ключа позволяет осушествлять ручную настройку конденсатора для последовательного выбора передающей станции. При этом поворот ротора конден­сатора C1 производится синхронно с поворотом конденсатора ге­теродина (одной ручкой). При варакторной настройке выбор необходимой станции осуществляется кнопочным управлением. В этом случае при помощи кнопок в схему источника питания включаются резисторы с различным сопротивлением, и таким образом изменяется напряжение, подаваемое на варакторные диоды. При каждом уровне напряжения приемник настраивает­ся на определенную станцию.

Рис. 12.4. Схема подстройки с двумя варакторными диодами (а) и условное обозначение такого диода (б).

В остальном показанная на рис. 12.4, а схема является тра­диционной. Разделительный конденсатор С2 служит для пода­чи сигнала на затвор полевого транзистора, а также для изо­ляции контура от постоянного напряжения. Резистор AI соеди­няет затвор транзистора с землей, и на него подается входной сигнал. Резисторно-емкостная цепь между истоком и землей обеспечивает стабилизацию постоянного тока, протекающего между истоком и стоком. Через резистор R3 подается напряже­ние питания на сток.

Условные обозначения варакторных диодов, показанные на-: рис. 12.4, а, применяются наиболее часто, но иногда используют и другие символы (рис. 12.4,6). Обозначения катода (к) и ано­да (а) на рис. 12.4,6 не отличаются от принятых для обычных диодов, но рядом с диодом изображается символ малой ем­кости.