
- •Матью Мэндл
- •200 Избранных схем электроники Редакция литературы по информатике и электронике
- •© Перевод на русский язык, «Мир», 1985, 1980 предисловие редактора перевода
- •Предисловие
- •Глава 1 усилители звуковой частоты и видеоусилители
- •1.1. Усилители с общим эмиттером и общим истоком
- •1.2. Усилители с общей базой и общим затвором
- •3.3. Усилители с общим коллектором и общим стоком
- •1.4. Классификация усилителей
- •1.5. Типы связи между каскадами
- •1.6. Цепи развязки
- •1.7. Регуляторы тембра
- •1.8. Отрицательная обратная связь
- •1.9. Видеоусилители
- •1.10. Фазоинверторы
- •1.11. Двухтактные усилители
- •Усилители специального назначения
- •2.1. Схема Дарлингтона
- •2.2. Операционные усилители
- •2.3. Дифференциальные усилители
- •2.4. Усилитель сигнала выключения канала цветности
- •2.5. Полосовой усилитель сигналов цветности
- •2.6. Усилитель сигналов цветности
- •2.7. Схема стробирования цветовой вспышки
- •2.8. Магнитные усилители
- •2.9. Магнитный усилитель с самонасыщением
- •2.10. Двухтактный магнитный усилитель
- •2.11. Выходные усилители блоков кадровой и строчной разверток
- •2.12. Усилитель чм-пилот-сигнала
- •Глава 3 усилители промежуточной и высокой частоты
- •3.1. Принципиальная схема упч
- •3.2. Заграждающие фильтры входного каскада упч
- •3.3. Каскады упч на полевых транзисторах
- •3.5. Линейный усилитель класса в
- •3.6. Однотактный усилитель класса с
- •3.7. Двухтактный усилитель класса с
- •3.8. Умножители частоты
- •Глава 4 генераторы
- •4.1. Генератор по схеме Армстронга
- •4.2. Генератор с регулируемой частотой
- •4.3. Генератор по схеме Хартли
- •4.4. Генератор по схеме Колпитса
- •4.5. Кварцованный генератор
- •4.6. Генератор поднесущей с фапч
- •4.7. Мультивибратор
- •4.8. Мультивибратор кадровой развертки
- •4.9. Блокинг-генератор
- •4.10. Блокииг-генератор кадровой развертки
- •4.11. Блокинг-генератор строчной развертки
- •Глава 5 фильтры и аттенюаторы (ослабители)
- •5.1. Общие положения
- •5.2. Фильтры нижних частот типа k
- •5.3. Фильтры нижних частот типа m
- •5.4. Фильтры верхних частот типа k
- •5.5. Фильтры верхних частот типа т
- •5.6. Сбалансированные фильтры
- •5.7. Полосовые фильтры
- •5.8. Заграждающие фильтры
- •5.9. Аттенюаторы (ослабители)
- •5.10. Типы переменных аттенюаторов
- •5.11. Типы постоянных аттенюаторов
- •5.15. Мостовые т- и н-образные аттенюаторы
- •5.16. Фильтр частичного подавления одной боковой полосы
- •Глава 6 модуляционные устройства
- •6.1. Основные виды модуляции
- •6.2. Режим однотактной am
- •6.3. Режим двухтактной am
- •6.4. Ширина полосы чм
- •6.5. Коэффициенты частотной модуляции
- •6.6. Обеспечение стабильности частоты несущей при чм
- •6.7. Балансный модулятор
- •6.8. Предварительная коррекция
- •6.9. Ввод импульсов синхронизации в состав телевизионного сигнала
- •6.10. Ввод кадровых синхроимпульсов
- •6.11. Схемы объединения сигналов
- •Глава 7 демодуляторы и схемы арг, ару и другие
- •7.1. Детектор ам-сигналов
- •7.2. Регенеративный детектор
- •7.3. Фазовый детектор
- •7.4. Дискриминатор чм-сигналов
- •7.5. Детектор отношений чм-сигналов
- •7.6. Схема ослабления звуковых сигналов более высоких частот
- •7.7. Видеодетектор
- •7.8. Автоматическая регулировка громкости
- •7.9. Основная схема ару
- •7.10. Ключевая схема ару
- •7.11. Автоматическая подстройка частоты
- •7.12. Автоматическая регулировка усиления сигналов цветности
- •7.13. Демодулятор цветоразностных сигналов в — y и r — y
- •Глава 8 цифровые схемы
- •8.1. Общие положения
- •8.2. Статический триггер
- •8.3. Схема или
- •8.4. Схемы или-не, и, и-не
- •8.5. Сложные логические схемы
- •8.6. Резисторно-транзисторные и диодно-транзисторные логические схемы
- •8.7. Логика с непосредственными связями
- •6.8. Схема исключающее или
- •8.9. Представление двоичного числа в прямом hi обратном кодах
- •Глава 9 мостовые схемы
- •9.1. Мостик Уитстона
- •9.2. L и с-мостики Уитстона
- •9.3. Мост Овена
- •9.4. Мост Максвелла
- •9.5. Мост Вина
- •9.6. Резонансный мост
- •9.7. Мост Хея
- •9.8. Мост Шеринга
- •9.9. Детектор мостового типа
- •9.10. Мостовой выпрямитель
- •9.11. Мостовой фазовый детектор
- •9.12. Мостовой антенный переключатель
- •Глава 10 источники питания и схемы управления
- •10.1. Общие сведеяшя об источниках питания
- •10.2. Однополупериодный выпрямитель
- •10.3. Двухполупериодный выпрямитель
- •10.4. Удвоитель напряжения
- •10.5. Утроитель напряжения
- •10.6. Высоковольтные схемы
- •10.7. Мостовой выпрямитель
- •10.8. Стабилизаторы напряжения
- •10.9. Прерыватели hi преобразователи
- •10.10. Схемы с регулируемым напряжением
- •10.11. Схема с тиристорами
- •10.12. Фазосдвигающая цепь
- •10.13. Схема с игнитроном
- •10.14. Двухполупериодная схема с игнитронами
- •Глава 11 цепи преобразования формы сигналов
- •11.1. Интегрирующая цепь
- •11.2. Дифференцирующая цепь
- •11.3. Интегрирующе-дифференцирующая цепь
- •11.4. Последовательный диодный ограничитель
- •11.5. Параллельный диодный ограничитель
- •11.6. Двусторонний ограничитель
- •11.7. Выравнивание амплитуд
- •11.8. Схемы фиксации уровня
- •11.9. Формирование пилообразных сигналов
- •11.10 Преобразование пилообразного напряжения в пилообразный ток
- •Глава 12 реактансные схемы
- •12.1. Основная схема с управляемым реактивным сопротивлением
- •12.2. Реактансная схема rс-типа
- •12.3. Реактансная схема rl-типа.
- •12.4. Схема подстройки с двумя варакторами
- •12.5. Схема с одним варактором
- •Глава 13 специальные устройства и системы
- •13.1. Делитель частоты на блокинг-генераторе
- •13.2. Делитель частоты накопительного типа
- •13.3. Удвоитель частоты
- •13.4. Одностабильный мультивибратор
- •13.5. Триггер Шмитта
- •13.6. Селектор синхроимпульсов
- •13.7. Индикатор настройки
- •13.8. Система переключения рода работы магнитофона
- •13.9. Схема гашения
- •13.10 Система переключения am- и чм-сигналов в стереоприемнике
- •13.11. Системы управления
- •13.12 Сельсины
- •13.13. Дифференциальные сельсины
- •13.14. Электромашинный усилитель — амплидин
- •13.15. Схемы с фотоэлементами
- •13.16. Основные измерительные схемы
- •Глава 14 интегральные схемы
- •14.1. Особенности интегральных схем
- •14.2. Применение интегральных схем в модулях
- •14.3. Многоэмиттерные транзисторы в схемах ттл-типа
- •14.4. Интегральные схемы с дополняющими моп-транзисторами
- •14.5. Логические схемы инжекционного типа
- •14.6. Схема вентиля или-не инжекционного типа
- •14.7. Схема фиксации с диодами Шоттки
- •Глава 15 функциональные схемы передающих и приемных устройств
- •15.1. Передатчик ам-сигналов
- •15.2. Одноканальный передатчик с чм
- •15.3. Многоканальный передатчик с чм
- •15.4. Телевизионный передатчик
- •15.5. Приемник ам-сигналов
- •15.6. Одноканальный приемник чм-сигналов
- •15.7. Многоканальный приемник чм-сигналов
- •15.8. Телевизионный приемник
- •Глава 1. Усилители звуковой частоты и видеоусилители
- •Глава 2. Усилители специального назначения
- •Глава 3. Усилители промежуточной и высокой частоты
- •Глава 4. Генераторы
- •Глава 5. Фильтры и аттенюаторы (ослабители)
- •Глава 6. Модуляционные устройства
- •Глава 7. Демодуляторы и схемы арг, ару и другие
- •Глава 8. Цифровые схемы
- •Глава 9. Мостовые схемы
- •Глава 10. Источники питания и схемы управления
- •Глава 11. Цепи преобразования формы сигналов
- •Глава 12. Реактансные схемы
- •Глава 13. Специальные устройства и системы
- •Глава 14. Интегральные схемы
- •Глава 15. Функциональные схемы передающих и приемных устройств
- •200 Избранных схем электроники
2.9. Магнитный усилитель с самонасыщением
На рис. 2.9, а приведена схема магнитного усилителя с самонасыщением (self-saturating magnetic amplifier). Этот усилитель позволяет получить большее усиление и больший к. л. д. по сравнению с рассмотренным выше магнитным усилителем. Усилитель с самонасыщением известен также как усилитель с внутренней обратной связью. Как показано на схеме, последовательно с нагрузкой Rн и источником переменного тока включен полупроводниковый диод Дь Здесь вместо трехстержневого применен обычный сердечник, который также характеризуется прямоугольной петлей гистерезиса. Диод производит выпрямление выходного тока (рис. 2.9, б), который состоит в этом случае из однополярных .полуволн переменного тока. Возникающие пульсации в принципе можно сгладить при помощи фильтра состоящего из дросселей и конденсаторов, который .минимизирует пульсирующую составляющую тока и позволяет таким образом получить практически постоянное напряжение на нагрузочном резисторе.
Рис. 2.9. Магнитный усилитель самонасыщающегося типа.
Гистерезисная характеристика магнитного усилителя с последовательно включенным в цепь нагрузки диодом показана на рис. 2.9, в. Однонаправленный ток протекает через обмотки L1 и L2 только в течение одного полупериода и поэтому насыщает сердечник только в одном направлении. В те полупериоды, когда ток равен нулю, напряженность магнитного поля также равна нулю, а магнитная индукция в сердечнике равна остаточной индукции. В другие полупериоды, по мере того как ток возрастает от куля до максимальной величины, магнитная индукция изменяется от уровня остаточной индукции до состояния насыщения. Сердечник фактически находится все время в насыщенном состоянии, поскольку диод обеспечивает протекание тока только в одном направлении, а следовательно, и одно направление магнитного потока. Пиковое значение пульсирующего напряжения на нагрузке равно пиковому значению напряжения источника питания, так как реактивное сопротивление обмоток при сердечнике в насыщенном состоянии фактически равно нулю и имеется лишь падение напряжения на малом активном сопротивлении обмоток.
Если управляющее постоянное напряжение приложено к обмотке Ly, то оно будет влиять на характеристики сердечника. Если полярность управляющего тока такова, .что последний вызывает магнитную индукцию противоположного направления по сравнению с .индукцией, обусловленной полупериодами тока от источника литания, то магнитная индукция стремится к некоторому уровню, определяемому управляющим постоянным подмагничиванием (подмагничивающим полем) (Рис. 2.9, в). В те полупериоды, когда ток равен нулю, управляющий ток эффективно снижает намагниченность сердечника. Как показано на рис. 2.9, в, в эти полупериоды напряженность магнитного поля уменьшается до некоторого отрицательного уровня, соответствующего падающему участку петли гистерезиса. В те по-лупериоды, когда диод находится в состоянии проводимости, ток обмоток L1 и L2 компенсирует действие управляющего тока и вводит сердечник опять в состояние насыщения.
Для того тобы повторно увеличить индукцию от уровня, соответствующего постоянному подмагничиванию, до уровня насыщения, необходимо, чтобы ток, протекающий через обмотки L1 и L2, превышал уровень, при котором компенсируется, действие тока постоянного подмагничивания; этот процесс длится определенное время. Так как выходное напряжение остается малым до тех пор, пока не достигается состояния полного насыщения, то в течение необходимого для этого времени всякие изменения выходного напряжения замедляются (рис. 2.9, б), в результате форма выходного напряжения несколько изменяется.
При увеличении постоянного подмагничивания рабочая точка на петле гистерезиса смещается в нижнюю левую часть. Это вызывает увеличение времени перехода в насыщенное состояние. Поэтому подмагничивание можно использовать для регулирования выходной мощности путем изменения величины напряженности магнитного поля .(создаваемого каждой полуволной пульсирующего тока), необходимой для перевода сердечника в состояние положительного насыщения. Достаточно большим уровнем подмагничивания сердечник может быть введен в состояние противоположного насыщения по отношению к насыщению, вызываемому пульсирующим током. При этом время перемагничивания сердечника максимально. Изменение управляющего .напряжения, а следовательно, и тО:Ка в катушке Ly вызывает соответствующее изменение мощности, передаваемой в нагрузку. Так как изменение выходной мощности значительно больше вызвавшего его изменения входной мощности, то в рассматриваемой схеме осуществляется усиление по мощности.
Постоянное ,подмагничивание, создаваемое управляющей обмоткой, определяет величину потока магнитной индукции, который складывается (или вычитается) с потоком, создаваемым выходными обмотками. Поэтому магнитный усилитель с еамонасыщанием является усилителем с обратной связью.