Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

motorola / Bipolar / BUS98REV

.PDF
Источник:
Скачиваний:
2
Добавлен:
06.01.2022
Размер:
332.64 Кб
Скачать

MOTOROLA

SEMICONDUCTOR TECHNICAL DATA

Order this document by BUS98/D

Designer's Data Sheet

SWITCHMODE Series

NPN Silicon Power Transistors

The BUS98 and BUS98A transistors are designed for high±voltage, high±speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line±operated switchmode applications such as:

Switching Regulators

Inverters

Solenoid and Relay Drivers

Motor Controls

Deflection Circuits

Fast Turn±Off Times

60 ns Inductive Fall Time ±25_C (Typ)

120 ns Inductive Crossover Time ±25_C (Typ) Operating Temperature Range ±65 to +200_C

100_C Performance Specified for: Reverse±Biased SOA with Inductive Loads Switching Times with Inductive Loads Saturation Voltages

Leakage Currents (125_C)

MAXIMUM RATINGS

BUS98

BUS98A

30 AMPERES

NPN SILICON

POWER TRANSISTORS 400 AND 450 VOLTS (BVCEO)

250 WATTS

850 ± 1000 V (BVCES)

CASE 1±07

TO±204AA

Rating

Symbol

BUS98

 

BUS98A

Unit

 

 

 

 

 

 

Collector±Emitter Voltage

VCEO(sus)

400

 

450

Vdc

Collector±Emitter Voltage

VCEV

850

 

1000

Vdc

Emitter Base Voltage

VEB

 

7

Vdc

Collector Current Ð Continuous

IC

 

30

Adc

Ð Peak (1)

ICM

 

60

 

Ð Overload

IoI

 

120

 

Base Current Ð Continuous

IB

 

10

Adc

Ð Peak (1)

IBM

 

30

 

Total Power Dissipation Ð T C = 25_C

PD

 

250

Watts

Ð T C = 100_C

 

 

142

 

Derate above 25_C

 

 

1.42

_

 

 

 

 

 

W/ C

Operating and Storage Junction

TJ, Tstg

± 65 to +200

_C

Temperature Range

 

 

 

 

 

 

 

 

 

 

 

THERMAL CHARACTERISTICS

Characteristic

Symbol

Max

Unit

 

 

 

 

Thermal Resistance,

RqJC

0.7

_C/W

Junction to Case

 

 

 

 

 

 

 

Maximum Lead Temperature

TL

275

_C

for Soldering Purposes:

 

 

 

1/8″ from Case for 5 Seconds

 

 

 

 

 

 

 

(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle x10%.

 

 

 

Designer's and SWITCHMODE are trademarks of Motorola, Inc.

 

 

 

Designer's Data for ªWorst Caseº Conditions Ð The Designer 's Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit curves Ð representing boundaries on device characteristics Ð are given to facilitate ªworst caseº design.

REV 7

Motorola, Inc. 1995

BUS98 BUS98A

ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted)

 

 

Characteristic

 

 

Symbol

Min

Typ

Max

Unit

 

 

 

 

 

 

 

 

 

 

OFF CHARACTERISTICS (1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Collector±Emitter Sustaining Voltage (Table 1)

 

 

VCEO(sus)

 

 

 

Vdc

(IC = 200 mA, IB = 0) L = 25 mH

 

 

BUS98

 

400

Ð

Ð

 

 

 

 

 

 

BUS98A

 

450

Ð

Ð

 

 

 

 

 

 

 

 

 

 

 

Collector Cutoff Current

 

 

 

ICEV

 

 

 

mAdc

(VCEV = Rated Value, VBE(off) = 1.5 Vdc)

 

 

 

Ð

Ð

0.4

 

(VCEV = Rated Value, VBE(off) = 1.5 Vdc, TC = 125_C)

 

Ð

Ð

4.0

 

Collector Cutoff Current

 

 

 

ICER

 

 

 

mAdc

(VCE = Rated VCEV, RBE = 10 Ω)

 

 

TC = 25 _C

 

Ð

Ð

1.0

 

 

 

 

 

 

TC = 125 _C

 

Ð

Ð

6.0

 

Emitter Cutoff Current

 

 

 

IEBO

Ð

Ð

0.2

mAdc

(VEB = 7 Vdc, IC = 0)

 

 

 

 

 

 

 

 

Emitter±Base Breakdown Voltage

 

 

 

VEBO

7.0

Ð

Ð

Vdc

(IE = 100 mA ± IC = 0)

 

 

 

 

 

 

 

 

SECOND BREAKDOWN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Second Breakdown Collector Current with Base Forward Biased

IS/b

 

See Figure 12

 

Clamped Inductive SOA with Base Reverse Biased

 

 

RBSOA

 

See Figure 13

 

 

 

 

 

 

 

 

 

 

 

ON CHARACTERISTICS (1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DC Current Gain

 

 

 

 

hFE

8

Ð

Ð

Ð

(IC = 20 Adc, VCE = 5 Vdc)

 

 

BUS98

 

 

 

 

 

(IC = 16 Adc, VCE = 5 V)

 

 

BUS98A

 

 

 

 

 

Collector±Emitter Saturation Voltage

 

 

 

VCE(sat)

 

 

 

Vdc

(IC = 20 Adc, IB = 4 Adc)

 

 

BUS98

 

Ð

Ð

1.5

 

(IC = 30 Adc, IB = 8 Adc)

 

 

 

 

Ð

Ð

3.5

 

(IC = 20 Adc, IB = 4 Adc, TC = 100_C)

 

 

 

Ð

Ð

2.0

 

(IC = 16 Adc, IB = 3.2 Adc)

 

 

BUS98A

 

Ð

Ð

1.5

 

(IC = 24 Adc, IB = 5 Adc)

 

 

 

 

Ð

Ð

5.0

 

(IC = 16 Adc, IB = 3.2 Adc, TC = 100_C)

 

 

 

Ð

Ð

2.0

 

Base±Emitter Saturation Voltage

 

 

 

VBE(sat)

 

 

 

Vdc

(IC = 20 Adc, IB = 4 Adc)

 

 

BUS98

 

Ð

Ð

1.6

 

(IC = 20 Adc, IB = 4 Adc, TC = 100_C)

 

 

 

Ð

Ð

1.6

 

(IC = 16 Adc, IB = 3.2 Adc)

 

 

BUS98A

 

Ð

Ð

1.6

 

(IC = 16 Adc, IB = 3.2 Adc, TC = 100_C)

 

 

 

Ð

Ð

1.6

 

DYNAMIC CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output Capacitance

 

 

 

 

Cob

Ð

Ð

700

pF

(VCB = 10 Vdc, IE = 0, ftest = 100 kHz)

 

 

 

 

 

 

 

SWITCHING CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Restive Load (Table 1)

 

 

 

 

 

 

 

 

Delay Time

 

(VCC

= 250 Vdc, IC = 20 A,

td

Ð

0.1

0.2

μs

Rise Time

 

tr

Ð

0.4

0.7

 

 

IB1

= 4.0 A, tp = 30

μ

 

 

 

s,

 

 

 

 

 

Storage Time

 

Duty Cycle v 2%, VBE(off) = 5 V)

ts

Ð

1.55

2.3

 

 

 

(for BUS98A: IC = 16 A, Ib1 = 3.2 A)

 

 

 

 

 

Fall Time

 

tf

Ð

0.2

0.4

 

 

 

 

 

 

 

Inductive Load, Clamped (Table 1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Storage Time

 

IC(pk) = 20 A

(BUS98)

 

(T = 25_C)

tsv

Ð

1.55

Ð

μs

 

 

 

 

 

 

 

 

Fall Time

 

Ib1 = 4 A

 

 

C

tfi

Ð

0.06

Ð

 

 

 

 

 

 

Storage Time

 

VBE(off) = 5 V,

 

 

 

tsv

Ð

1.8

2.8

 

 

VCE(c1) = 250 V)

 

 

 

 

Crossover Time

 

IC(pk) = 16 A

(BUS98A)

 

(TC = 100_C)

tc

Ð

0.3

0.6

 

 

 

lB1 = 3.2 A)

 

 

 

 

 

 

 

 

Fall Time

 

 

 

 

tfi

Ð

0.17

0.35

 

 

 

 

 

 

 

(1) Pulse Test: PW = 300 μs, Duty Cycle v 2%.

2

Motorola Bipolar Power Transistor Device Data

 

 

 

 

 

 

 

 

 

 

 

 

 

BUS98

BUS98A

 

 

 

 

 

 

 

DC CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(VOLTS)

10

 

 

 

 

 

 

 

50

90%

 

 

 

 

 

5

 

IC = 15 A

 

 

 

 

 

 

 

 

 

 

 

VOLTAGE

 

 

 

 

 

CURRENT GAIN

 

 

 

 

 

 

 

 

 

 

 

 

 

30

 

 

 

 

 

 

3

 

 

 

IC = 20 A

 

20

10%

 

 

 

 

 

 

IC = 10 A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

, DC

5

 

 

 

 

 

 

COLLECTOR±EMITTER

0.5

 

 

 

 

 

 

FE

3

 

 

 

 

 

 

0.3

 

 

 

 

 

 

h

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCE = 5 V

 

 

 

 

 

TC = 25°C

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

CE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

3

5

7

10

20

30

50

0.1

0.3

0.5

1

2

3

4

 

 

IC, COLLECTOR CURRENT (AMPS)

 

 

 

IB, BASE CURRENT (AMPS)

 

 

Figure 1. DC Current Gain

Figure 2. Collector Saturation Region

(VOLTS)

 

βf = 5

 

 

VOLTAGE

 

 

 

90%

 

 

 

10%

, COLLECTOR±EMITTER

1

 

 

 

 

 

0.7

 

 

 

0.3

 

 

 

 

 

 

 

CE

0.1

 

 

 

V

3

10

20

 

1

 

 

IC, COLLECTOR CURRENT (AMPS)

(VOLTS)

 

βf = 5

 

 

 

2

 

 

 

 

VOLTAGE

 

 

 

 

1

 

TJ = 25°C

 

 

EMITTER

0.7

 

 

TJ = 100°C

 

0.5

 

 

 

 

 

 

 

 

 

 

 

 

, BASE

0.3

 

 

 

 

 

 

 

 

 

BE

 

 

 

 

 

V

 

 

 

 

 

 

0.1

0.3

1

3

10

 

 

 

IC, COLLECTOR CURRENT (AMPS)

 

Figure 3. Collector±Emitter Saturation Voltage

Figure 4. Base±Emitter Voltage

 

104

 

 

 

 

 

 

10k

 

 

 

 

 

VCE = 250 V

 

 

 

 

 

 

 

 

 

( μA)

103

 

 

 

 

 

CAPACITANCEC, (pF)

 

Cib

 

 

COLLECTOR, CURRENT

0

TJ = 150°C

 

FORWARD

 

 

1k

 

Cob

 

REVERSE

 

 

 

 

 

 

 

102

125°C

 

 

 

 

 

 

 

 

 

 

101

100°C

 

 

 

 

 

100

 

 

 

 

 

75°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

10

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

25°C

 

 

 

 

 

 

TJ = 25°C

 

 

 

10 ±1

 

 

 

 

 

 

10

 

 

 

± 0.2

0

0.2

0.4

0.6

 

10

100

1000

 

± 0.4

 

1

 

 

VBE, BASE±EMITTER VOLTAGE (VOLTS)

 

 

 

VR, REVERSE VOLTAGE (VOLTS)

 

Figure 5. Collector Cutoff Region

Figure 6. Capacitance

Motorola Bipolar Power Transistor Device Data

3

BUS98 BUS98A

Table 1. Test Conditions for Dynamic Performance

 

VCEO(sus)

 

 

 

RBSOA AND INDUCTIVE SWITCHING

 

 

RESISTIVE SWITCHING

 

 

 

 

 

 

 

 

 

± VC1

 

TURN±ON TIME

 

 

 

 

 

 

 

MJE200

 

 

ADJUST VC1

 

 

 

 

 

 

 

 

 

 

 

1

 

 

+10 V

 

 

 

 

 

 

 

TO OBTAIN

 

 

 

1

 

 

 

BUV20

0.1 μF

50 μF

 

 

 

 

 

 

 

DESIRED IB1

 

2

 

INPUT CONDITIONS

20

+10 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IB1

 

0

 

 

 

 

MJE210

 

 

 

 

 

 

±10 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

BUV20

 

 

 

 

IB1 adjusted to

 

 

 

 

 

 

 

 

 

 

obtain the forced

 

 

 

 

 

 

 

 

 

 

 

 

hFE desired

 

 

PW Varied to Attain

 

 

 

 

 

1 μF

50 μF

 

 

TURN±OFF TIME

 

 

IC = 100 mA

 

 

 

 

ADJUST VC2

 

 

 

Use inductive switching

 

 

 

 

 

 

 

 

 

driver as the input to

 

 

 

 

 

 

 

TO OBTAIN

 

 

 

 

 

 

 

 

 

 

 

 

 

the resistive test circuit.

 

 

 

 

 

 

DESIRED IB2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CIRCUIT VALUES

Lcoil = 25 mH, VCC = 10 V

 

 

Lcoil = 180 μH

 

 

 

 

VCC = 250 V

 

 

 

Rcoil = 0.05 Ω

Vclamp = 250 V

 

 

 

 

 

Rcoil = 0.7 Ω

 

 

 

 

 

 

Pulse Width = 10 μs

 

 

 

 

VCC = 20 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INDUCTIVE TEST CIRCUIT

 

 

 

OUTPUT WAVEFORMS

t1 Adjusted to

RESISTIVE TEST CIRCUIT

 

 

 

 

 

 

 

 

 

 

 

CIRCUITS

 

 

 

 

IC

 

 

Obtain IC

 

 

 

TUT

 

 

 

IC(pk)

tf Clamped

 

Lcoil (IC(pk))

 

TUT

 

 

R

coil

 

t1 [

 

 

 

 

 

1

RL

1

1N4937

 

 

 

t

 

VCC

 

Lcoil

 

t1

tf

 

 

2

V

CC

INPUT

OR

 

 

Lcoil (IC(pk))

TEST

 

 

 

t2 [

 

SEE ABOVE FOR

EQUIVALENT

 

 

 

 

 

V

 

 

 

DETAILED CONDITIONS

Vclamp

VCC

VCE

VCE or

 

 

clamp

 

 

 

 

Test Equipment

 

 

 

 

 

 

 

 

 

Vclamp

t

 

 

 

 

2

 

 

 

 

 

Scope Ð Tektronix

 

 

 

 

 

 

 

 

TIME

t2

475 or Equivalent

 

 

 

 

 

 

 

 

 

 

 

 

 

IC pk

 

VCE(pk)

 

(AMPS)

 

 

90% VCE(pk)

90% IC(pk)

 

 

 

 

 

IC

t

t

 

t

t

CURRENT

 

sv

rv

 

fi

ti

 

 

 

 

 

 

tc

 

 

 

VCE

90% I

10% VCE(pk)

I pk

2% IC

BASE,

I

 

 

10%

 

 

B

B1

 

 

C

 

B2(pk)

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

TIME

 

 

 

 

Figure 7. Inductive Switching Measurements

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

β

f = 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16

 

IC = 20

A

 

 

 

 

 

 

 

 

 

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

2

3

4

5

6

0

 

VBE(off), BASE±EMITTER VOLTAGE (VOLTS)

Figure 8. Peak±Reverse Current

4

Motorola Bipolar Power Transistor Device Data

BUS98 BUS98A

SWITCHING TIMES NOTE

In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined.

tsv = Voltage Storage Time, 90% IB1 to 10% Vclamp trv = Voltage Rise Time, 10±90% Vclamp

tfi = Current Fall Time, 90±10% IC tti = Current Tail, 10±2% IC

tc = Crossover Time, 10% Vclamp to 10% IC

An enlarged portion of the inductive switching waveforms is

shown in Figure 7 to aid in the visual identity of these terms. For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained us-

ing the standard equation from AN±222:

PSWT = 1/2 VCCIC(tc) f

In general, trv + tfi ] tc. However, at lower test currents this relationship may not be valid.

As is common with most switching transistors, resistive switching is specified at 25_C and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user oriented specifications which make this a ªSWITCHMODEº transistor are the inductive switching speeds (tc and tsv) which are guaranteed at 100_C.

INDUCTIVE SWITCHING

t, TIME ( μs)

4

 

3

 

2

TC = 100°C

 

1

TC = 25°C

0.7

 

0.5

 

 

βf = 5

2

4

6

8

10

20

30

 

IC, COLLECTOR CURRENT (AMPS)

 

Figure 9. Storage Time, tsv

t, TIME ( μs)

0.8

 

 

 

 

 

 

0.6

 

 

 

 

TC = 100°C

 

0.4

 

 

 

 

 

 

 

 

 

 

 

0.2

 

 

 

 

TC = 100°C

 

0.1

 

 

 

 

 

TC = 25°C

 

 

 

 

 

TC = 25°C

 

 

tc

 

 

 

 

 

 

tfi

 

 

 

 

 

βf = 5

 

 

 

 

 

 

2

4

6

8

10

20

30

 

IC, COLLECTOR CURRENT (AMPS)

 

Figure 10. Crossover and Fall Times

 

3

 

 

TC = 25°C

 

 

2

 

 

 

 

 

tsv

 

IC = 20 A

 

 

1

 

VBE(off) = 5 V

 

 

 

 

 

 

μs)

0.5

 

 

 

 

 

 

 

 

 

(

0.3

 

 

 

 

t, TIME

tc

 

 

 

0.2

 

 

 

 

 

 

 

 

0.1

tfi

 

 

 

 

 

 

 

 

 

0.05

 

 

 

 

 

0.03

4

6

8

10

 

2

 

 

βf, FORCED GAIN

 

 

Figure 11a. Turn±Off Times versus Forced Gain

 

3

 

 

 

TC = 25°C

 

2

 

 

 

 

 

tsv

 

 

IC = 20 A

 

1

 

 

βf = 5

 

 

 

 

 

μs)

0.5

 

 

 

 

 

 

 

 

 

(

0.3

 

 

 

 

t, TIME

 

 

 

 

0.2

tc

 

 

 

 

0.1

tfi

 

 

 

 

0.05

 

 

 

 

 

0.03

2

3

4

5

 

1

 

 

 

Ib2/Ib1

 

 

Figure 11b. Turn±Off TM Times versus Ib2/Ib1

Motorola Bipolar Power Transistor Device Data

5

BUS98 BUS98A

The Safe Operating Area figures shown in Figures 12 and 13 are specified for these devices under the test conditions shown.

 

30

 

 

 

 

 

 

 

 

 

(AMPS)

20

 

 

 

 

DC

 

 

 

 

10

 

 

 

 

 

1 ms

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

CURRENT

2

 

 

LIMIT

 

 

 

 

 

 

1

 

 

ONLY FOR

 

 

 

 

 

 

 

TURN ON

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

, COLLECTOR

 

 

 

 

 

 

 

 

 

0.2

TC = 25°C

 

 

 

 

 

 

 

0.1

 

 

 

tr = 0.7

μs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

0.05

 

 

 

 

 

BUS98

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.02

 

 

 

 

 

BUS98A

 

 

 

2

5

10

20

50

100

200

500

1000

 

 

 

 

 

VCE, COLLECTOR±EMITTER VOLTAGE (VOLTS)

 

 

Figure 12. Forward Bias Safe Operating Area

 

100

 

 

 

 

 

(AMPS)

80

 

 

 

 

 

 

 

 

 

 

 

CURRENT

60

 

BUS98

BUS98A

 

 

 

 

 

 

 

 

 

 

 

 

, COLLECTOR

40

 

 

 

 

 

20

VBE(off) = 5 V

 

 

 

 

C

 

TC = 100°C

 

 

 

 

I

 

 

 

 

 

 

 

IC/IB1 5

 

 

 

 

 

0

200

400

600

800

1000

 

 

VCE, COLLECTOR±EMITTER VOLTAGE (VOLTS)

 

Figure 13. Reverse Bias Safe Operating Area

 

100

 

 

 

 

 

(%)

 

 

 

SECOND BREAKDOWN

 

80

 

 

 

DERATING

 

FACTOR

60

 

 

 

 

 

DERATING

 

 

 

 

 

 

 

THERMAL

 

 

 

40

 

DERATING

 

 

 

 

 

 

 

 

 

POWER

20

 

 

 

 

 

 

 

 

 

 

 

 

0

40

80

120

160

200

 

0

 

 

 

TC, CASE TEMPERATURE (°C)

 

Figure 14. Power Derating

SAFE OPERATING AREA INFORMATION

FORWARD BIAS

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC ± VCE limits of the transistor that must be observed for reliable operation, i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 12 is based on TC = 25_C; TJ(pk) is variable depending on power level. Second breakdown pulse

limits are valid for duty cycles to 10% but must be derated when TC w 25_C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 12 may be found at any case temperature by using the appropriate curve on Figure 14.

TJ(pk) may be calculated from the data in Figure 11. At high case temperatures, thermal limitations will reduce the power

that can be handled to values less than the limitations imposed by second breakdown.

REVERSE BIAS

For inductive loads, high voltage and high current must be sustained simultaneously during turn±off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage±current conditions during reverse biased turn±off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 13 gives RBSOA characteristics.

6

Motorola Bipolar Power Transistor Device Data

 

 

 

 

 

 

BUS98

BUS98A

 

 

1.0

 

 

 

 

 

 

 

0.5

D = 0.5

 

 

 

 

 

RESISTANCE (NORMALIZED)

 

 

 

 

 

r(t), TRANSIENT THERMAL

0.2

0.2

 

 

 

 

 

 

 

 

 

0.1

0.1

 

RθJC(t) = r(t) RθJC

P(pk)

 

 

 

 

RθJC = 0.7°C/W MAX

 

 

0.05

 

 

D CURVES APPLY FOR POWER

 

 

 

 

PULSE TRAIN SHOWN

t1

 

 

 

 

 

 

 

 

READ TIME AT t1

t2

 

 

 

 

SINGLE PULSE

 

TJ(pk) ± TC = P(pk) RθJC(t)

DUTY CYCLE, D = t /t

 

 

 

 

 

 

1 2

 

 

0.01

1.0

10

100

1000

10000

 

 

0.1

t, TIME (ms)

Figure 15. Thermal Response

OVERLOAD CHARACTERISTICS

 

200

 

 

 

 

 

 

(AMPS)

 

TC = 25°C

 

 

 

 

 

160

 

 

 

 

 

 

 

 

 

 

 

 

 

CURRENT

120

 

 

 

 

 

 

 

tp = 10

μs

 

 

 

 

,COLLECTOR

 

BUS98A

 

 

80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BUS98

 

 

40

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

0

100

200

300

400

450

500

 

 

VCE, COLLECTOR±EMITTER VOLTAGE (VOLTS)

 

 

Figure 16. Rated Overload Safe Operating Area

(OLSOA)

OLSOA

OLSOA applies when maximum collector current is limited and known. A good example Is a circuit where an inductor is inserted between the transistor and the bus, which limits the rate of rise of collector current to a known value. If the transistor is then turned off within a specified amount of time, the magnitude of collector current is also known.

Maximum allowable collector±emitter voltage versus collector current is plotted for several pulse widths. (Pulse width is defined as the time lag between the fault condition and the removal of base drive.) Storage time of the transistor has been factored into the curve. Therefore, with bus voltage and maximum collector current known, Figure 16 defines the maximum time which can be allowed for fault detection and shutdown of base drive.

OLSOA is measured in a common±base circuit (Figure 18) which allows precise definition of collector±emitter voltage and collector current. This is the same circuit that is used to measure forward±bias safe operating area.

IC, (AMP)

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RBE = 50

Ω

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

500 μF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RBE = 5 Ω

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

500 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

RBE =

1.1 Ω

 

 

 

 

 

Notes:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RBE = 0

 

 

VCE = VCC + VBE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adjust pulsed current source

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for desired IC, tp

 

 

 

 

 

 

 

 

 

 

 

 

VEE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

2

4

6

8

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dV/dt (KV/μs)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. IC = f (dV/dt)

 

Figure 18. Overload SOA Test Circuit

Motorola Bipolar Power Transistor Device Data

7

BUS98 BUS98A

PACKAGE DIMENSIONS

 

A

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

NOTES:

 

 

 

 

 

C

 

 

 

 

 

 

1. DIMENSIONING AND TOLERANCING PER ANSI

 

 

 

 

 

 

 

Y14.5M, 1982.

 

 

 

 

 

±T±

SEATING

 

 

2. CONTROLLING DIMENSION: INCH.

 

 

E

 

 

PLANE

 

 

3. ALL RULES AND NOTES ASSOCIATED WITH

 

 

 

 

 

 

 

REFERENCED TO±204AA OUTLINE SHALL APPLY.

 

D 2 PL

K

 

 

 

 

 

 

 

 

 

 

 

 

INCHES

MILLIMETERS

 

 

 

 

 

 

 

 

 

0.13 (0.005) M

T

Q

M

Y

M

 

 

DIM

MIN

MAX

MIN

MAX

 

U

 

 

 

 

 

 

A

1.550 REF

39.37 REF

 

±Y±

 

 

 

 

B

±±±

1.050

±±±

26.67

V

L

 

 

 

 

 

 

 

 

 

 

C

0.250

0.335

6.35

8.51

 

2

 

 

 

 

 

 

D

0.038

0.043

0.97

1.09

 

 

B

 

 

 

 

E

0.055

0.070

1.40

1.77

H

G

 

 

 

 

 

G

0.430 BSC

10.92 BSC

1

 

 

 

 

 

 

H

0.215 BSC

5.46 BSC

 

 

 

 

 

 

 

K

0.440

0.480

11.18

12.19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

0.665 BSC

16.89 BSC

 

±Q±

 

 

 

 

 

 

N

±±±

0.830

±±±

21.08

 

0.13 (0.005) M

T

Y

M

 

 

 

Q

0.151

0.165

3.84

4.19

 

 

 

 

U

1.187 BSC

30.15 BSC

 

 

 

 

 

 

 

 

V

0.131

0.188

3.33

4.77

 

 

 

 

 

 

 

 

STYLE 1:

 

 

 

 

 

 

 

 

 

 

 

 

PIN 1. BASE

 

 

 

 

 

 

 

 

 

 

 

2. EMITTER

 

 

 

 

 

 

 

 

 

 

CASE: COLLECTOR

 

 

CASE 1±07

TO±204AA (TO±3)

ISSUE Z

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. ªTypicalº parameters can and do vary in different applications. All operating parameters, including ªTypicalsº must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

 

USA / EUROPE: Motorola Literature Distribution;

JAPAN: Nippon Motorola Ltd.; Tatsumi±SPD±JLDC, Toshikatsu Otsuki,

P.O. Box 20912; Phoenix, Arizona 85036. 1±800±441±2447

6F Seibu±Butsuryu±Center, 3±14±2 Tatsumi Koto±Ku, Tokyo 135, Japan. 03±3521±8315

MFAX: RMFAX0@email.sps.mot.com ± TOUCHTONE (602) 244±6609 HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,

INTERNET: http://Design±NET.com

51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852±26629298

BUS98/D

*BUS98/D*

Соседние файлы в папке Bipolar