Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

motorola / Bipolar / MJ16110R

.PDF
Источник:
Скачиваний:
2
Добавлен:
06.01.2022
Размер:
424.61 Кб
Скачать

MOTOROLA

SEMICONDUCTOR TECHNICAL DATA

Order this document by MJ16110/D

Designer's Data Sheet

NPN Silicon Power Transistors

SWITCHMODE Bridge Series

. . . specifically designed for use in half bridge and full bridge off line converters.

Excellent Dynamic Saturation Characteristics

Rugged RBSOA Capability

Collector±Emitter Sustaining Voltage Ð V CEO(sus) Ð 400 V

Collector±Emitter Breakdown Ð V (BR)CES Ð 650 V

State±of±Art Bipolar Power Transistor Design

Fast Inductive Switching:

tfi = 25 ns (Typ) @ 100_C tc = 50 ns (Typ) @ 100_C

tsv = 1 μs (Typ) @ 100_C

Ultrafast FBSOA Specified

100_C Performance Specified for: RBSOA

Inductive Load Switching Saturation Voltages Leakages

MAXIMUM RATINGS

Rating

Symbol

MJ16110

 

MJW16110

Unit

 

 

 

 

 

 

Collector±Emitter Sustaining Voltage

VCEO(sus)

 

400

Vdc

Collector±Emitter Breakdown Voltage

VCES

 

650

Vdc

Emitter±Base Voltage

VEBO

 

6

Vdc

Collector Current Ð Continuous

IC

 

15

Adc

Ð Pulsed (1)

ICM

 

20

 

Base Current Ð Continuous

IB

 

10

Adc

Ð Pulsed (1)

IBM

 

15

 

Total Power Dissipation

PD

175

 

135

Watts

@ TC = 25_C

 

 

@ TC = 100_C

 

100

 

54

 

Derated above 25_C

 

1

 

1.09

_

 

 

 

 

 

W/ C

Operating and Storage Temperature

TJ, Tstg

± 65 to 200

± 55 to 150

_C

THERMAL CHARACTERISTICS

Thermal Resistance Ð

RqJC

1

 

0.92

_C/W

Junction to Case

 

 

 

 

 

 

 

 

 

 

 

Maximum Lead Temperature for

TL

275

 

_C

Soldering Purposes 1/8″ from Case

 

 

 

 

 

for 5 Seconds

 

 

 

 

 

 

 

 

 

 

 

(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle v 10%.

MJ16110* MJW16110*

*Motorola Preferred Device

POWER TRANSISTORS

15 AMPERES

400 VOLTS

175 AND 135 WATTS

CASE 1±07

TO±204AA

(FORMERLY TO±3)

MJ16110

CASE 340F±03

TO±247AE

MJW16110

Designer's Data for ªWorst Caseº Conditions Ð The Designer' s Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit curves Ð representing boundaries on device characteristics Ð are given to facilitate ªworst caseº design.

Preferred devices are Motorola recommended choices for future use and best overall value.

Designer's and SWITCHMODE are trademarks of Motorola Inc.

REV 1

Motorola, Inc. 1995

MJ16110

MJW16110

 

 

 

 

 

 

 

ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Characteristic

 

Symbol

Min

Typ

Max

Unit

 

 

 

 

 

 

 

 

 

 

 

 

OFF CHARACTERISTICS (1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Collector±Emitter Sustaining Voltage (Table 1) (IC = 20 mAdc, IB = 0)

VCEO(sus)

400

Ð

Ð

Vdc

 

Collector Cutoff Current

 

 

 

ICEV

 

 

 

μAdc

 

(VCE = 650 Vdc, VBE(off) = 1.5 V)

 

 

Ð

Ð

100

 

 

(VCE = 650 Vdc, VBE(off) = 1.5 V, TC = 100_C)

 

 

Ð

Ð

1000

 

 

Collector Cutoff Current (VCE = 650 Vdc, RBE = 50 Ω, TC = 100_C)

ICER

Ð

Ð

1000

μAdc

 

Emitter±Base Leakage (VEB = 6 Vdc, IC = 0)

 

IEBO

Ð

Ð

10

μAdc

 

ON CHARACTERISTICS (1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Collector±Emitter Saturation Voltage

 

VCE(sat)

 

 

 

Vdc

 

(IC = 5 Adc, IB = 0.5 Adc)

 

 

 

 

Ð

0.3

0.9

 

 

(IC = 10 Adc, IB = 1.2 Adc)

 

 

 

 

Ð

0.7

2.0

 

 

(IC = 10 Adc, IB = 2 Adc)

 

 

 

 

Ð

0.3

1.0

 

 

(IC = 10 Adc, IB = 2 Adc, TC = 100_C)

 

 

Ð

0.4

1.5

 

 

Base±Emitter Saturation Voltage

 

VBE(sat)

 

 

 

Vdc

 

 

 

 

 

 

(IC = 10 Adc, IB = 2 Adc)

 

 

 

 

Ð

1.2

1.5

 

 

(IC = 10 Adc, IB = 2 Adc, TC = 100_C)

 

 

Ð

1.2

1.5

 

 

DC Current Gain (IC = 15 Adc, VCE = 5 Vdc)

 

hFE

6

12

20

Ð

 

DYNAMIC CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dynamic Saturation

 

 

 

VCE(dsat)

See Figures 11, 12, and 13

V

 

Output Capacitance (VCE = 10 Vdc, IE = 0, ftest = 1 kHz)

Cob

Ð

Ð

400

pF

 

SWITCHING CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inductive Load (Table 1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Storage

 

 

 

 

 

tsv

Ð

700

1500

ns

 

Crossover

 

 

 

 

TJ = 25_C

tc

Ð

45

150

 

 

Fall Time

 

IC = 10 A, IB1= 1 A,

 

 

tfi

Ð

20

75

 

 

 

 

VBE(off) = 5 V,

 

 

 

 

 

 

 

 

Storage

 

 

 

tsv

Ð

1000

2000

 

 

 

V

= 250 V

 

 

 

 

 

 

CE(pk)

 

 

 

 

 

 

 

 

 

Crossover

 

 

 

 

TJ = 100_C

tc

Ð

50

200

 

 

Fall Time

 

 

 

 

 

tfi

Ð

25

125

 

 

Resistive Load (Table 2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Delay Time

 

 

 

 

 

td

Ð

15

Ð

ns

 

Rise Time

 

IC = 10 A, IB1 = 1 A,

 

IB2 = 2 A,

tr

Ð

330

Ð

 

 

Storage Time

 

 

RB2 = 4 Ω

t

Ð

800

Ð

 

 

 

 

VCC = 250 V,

 

 

s

 

 

 

 

 

Fall Time

 

PW = 30 μs,

 

 

tf

Ð

110

Ð

 

 

 

Duty Cycle = v2%

 

 

 

 

Storage Time

 

 

VBE(off) = 5 V

ts

Ð

500

Ð

 

 

 

 

 

 

 

 

Fall Time

 

 

 

 

tf

Ð

250

Ð

 

 

 

 

 

 

 

 

(1) Pulse Test: Pulse Width = 300 μs, Duty Cycle v 2%.

2

Motorola Bipolar Power Transistor Device Data

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MJ16110

MJW16110

 

 

 

 

 

 

 

TYPICAL STATIC CHARACTERISTICS

 

 

 

 

 

 

 

 

h

 

 

 

 

 

 

 

 

COLLECTOR±EMITTERSATURATION

(VOLTS)VOLTAGE

3

 

 

 

 

 

 

 

 

TJ = 25°C

 

 

 

 

 

 

 

 

 

0.07

 

 

 

 

 

 

 

 

 

 

30

 

°

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

TJ = 100 C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

°

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

GAIN

 

 

 

 

 

 

 

 

 

 

0.7

 

 

 

 

 

TJ = 100°C

 

 

 

 

 

CURRENT

 

 

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

TJ = 25°C

 

 

 

 

 

 

10

TJ = ± 55°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.3

IC/IB = 10

 

 

 

 

 

 

 

 

 

, DC

 

 

 

 

 

 

 

 

 

 

0.2

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FE

 

 

 

 

 

 

 

 

 

0.1

 

 

 

 

 

 

 

 

TJ = 100°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

VCE = 5 V

 

,

 

0.05

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CE

 

 

 

 

 

 

 

 

 

I

/I = 5

 

 

2

 

 

 

 

 

 

 

V

 

0.03

 

 

 

 

 

 

 

 

C B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.2

0.3

0.5

1

2

3

5

10

20

 

0.15 0.2

0.3

0.5

0.7

1

2

3

5

7

10

15

 

 

 

 

IC, COLLECTOR CURRENT (AMPS)

 

 

 

 

 

 

IC, COLLECTOR CURRENT (AMPS)

 

 

 

Figure 1. DC Current Gain

Figure 2. Collector±Emitter Saturation Voltage

(VOLTS)

10

 

 

 

 

 

 

 

 

7

 

 

 

 

 

TJ = 25°C

 

5

 

 

 

 

 

 

VOLTAGE

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

COLLECTOR±EMITTER

1

 

10 A

 

15 A

 

 

 

 

 

 

 

 

 

 

 

0.7

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

 

5 A

 

7 A

 

 

 

 

 

0.2

IC = 3 A

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

CE

0.1

 

 

 

 

 

 

 

 

V

0.2

0.5

0.7

1

2

5

7

10

 

0.1

 

 

IB, BASE CURRENT (AMPS)

 

 

 

(VOLTS)

3

 

 

 

 

 

 

 

 

 

 

2

IC/IB = 5 & 10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VOLTAGE

1.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

, BASE±EMITTER

1

 

 

 

 

 

 

 

 

 

 

0.7

TJ = 25°C

 

 

 

 

 

 

 

 

0.5

TJ = 100°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BE

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

0.3

0.3

0.5

 

 

2

3

5

 

10

15

 

0.15 0.2

0.7

1

7

 

 

 

IC, COLLECTOR CURRENT (AMPS)

 

 

 

Figure 3. Collector±Emitter Saturation Region

Figure 4. Base±Emitter Saturation Region

C, CAPACITANCE (pF)

10K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

ib

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

500

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

300

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

200

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

ob

 

 

 

 

50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TJ

=

25

°C

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f

test =

1

kHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.1

0.3 0.5

1

3

5

10

 

30

50

100

300

600 1K

VCE, COLLECTOR±EMITTER VOLTAGE (VOLTS)

Figure 5. Capacitance

Motorola Bipolar Power Transistor Device Data

3

MJ16110 MJW16110

TYPICAL INDUCTIVE SWITCHING CHARACTERISTICS

IC/IB = 10, TC = 100°C, VCE(pk) = 250 V

 

10K

 

 

 

 

 

 

 

7K

 

 

 

 

 

 

 

5K

 

 

 

 

 

 

(ns)

3K

 

 

 

 

VBE(off) = 0 V

 

TIME

2K

 

 

 

 

IB2 = 2 (IB1)

 

 

 

 

VBE(off) = 2 V

 

 

 

,STORAGE

1K

 

 

 

 

 

 

 

 

 

 

 

700

 

 

 

 

VBE(off) = 5 V

 

500

 

 

 

 

 

 

sv

300

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

2

3

5

7

10

15

 

1.5

 

 

 

IC, COLLECTOR CURRENT (AMPS)

 

Figure 6. Storage Time

 

1K

 

 

 

 

 

 

 

 

700

 

 

 

 

 

 

 

 

500

 

 

 

 

 

 

 

(ns)

300

 

 

 

VBE(off) = 0 V

 

TIME

200

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

, CROSSOVER

100

 

 

 

 

IB2 = 2 (IB1)

 

 

 

 

 

VBE(off) = 5 V

 

70

 

 

 

 

 

50

 

 

 

V

 

= 2 V

 

 

 

 

 

BE(off)

 

c

30

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

10

2

3

5

7

10

 

15

 

1.5

 

IC, COLLECTOR CURRENT (AMPS)

Figure 7. Crossover Time

(ns)

1K

 

 

 

 

 

 

 

700

 

 

 

 

 

 

 

500

 

 

 

 

 

 

 

FALL TIME

 

 

 

 

 

 

 

200

 

 

 

 

 

 

 

CURRENT

 

 

 

 

 

 

 

100

 

 

 

VBE(off) = 0 V

 

 

 

 

 

 

 

 

70

 

 

 

 

IB2 = 2 (IB1)

 

COLLECTOR

 

 

 

 

 

50

 

 

 

 

 

 

 

30

 

 

 

VBE(off) = 2 V

 

20

 

 

 

V

BE(off)

= 5 V

 

,

 

 

 

 

 

 

 

fi

 

 

 

 

 

 

 

 

t

10

 

 

 

 

 

 

 

 

2

3

5

7

10

 

15

 

1.5

 

 

 

 

IC, COLLECTOR CURRENT (AMPS)

 

 

 

Figure 8. Fall Time

 

IC(pk)

VCE(pk)

 

 

 

90% VCE(pk)

90% IC(pk)

 

IC

t

t

t

 

t

 

sv

rv

fi

 

ti

 

 

 

tc

 

 

VCE

 

10% VCE(pk)

10%

 

 

 

2% IC

I

90% I

 

I

(pk)

B

B1

 

 

C

 

t, TIME

Figure 9. Inductive Switching Measurements

 

10

 

 

 

 

 

(AMPS)

9

 

 

 

 

 

8

 

 

 

 

 

CURRENT

 

 

 

 

 

7

 

 

 

 

 

6

IB1 = 2 A

 

 

 

 

 

 

 

 

 

BASE

5

 

 

1 A

 

 

4

 

 

 

 

, REVERSE

 

 

 

 

 

3

 

 

 

IC = 10 A

 

 

 

 

 

 

2

 

 

 

TC = 25°C

 

B2

1

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

0

1

2

3

4

5

 

0

 

 

VBE(off), REVERSE BASE VOLTAGE (VOLTS)

 

Figure 10. Peak Reverse Base Current

4

Motorola Bipolar Power Transistor Device Data

 

 

 

 

 

 

 

MJ16110

MJW16110

 

 

 

 

Table 1. Inductive Load Switching

 

 

 

 

Drive Circuit

 

 

VCEO(sus)

 

 

 

+15

 

 

 

 

 

IC(pk)

 

1 μF

150 Ω 100 Ω

100 μF

 

 

L = 10 mH

 

 

 

 

RB2 =

IC

 

 

 

 

 

 

 

 

 

 

 

MTP8P10

 

MTP8P10

VCC = 20 Volts

VCE(pk)

 

 

 

 

 

 

 

I

= 20 mA

 

 

 

 

 

 

 

C(pk)

 

 

 

 

 

 

 

 

RB1

Inductive Switching

V

 

 

 

MPF930

 

 

 

L = 200 μH

CE

 

 

 

 

 

A

 

 

 

+10

 

 

 

RB2 = 0

 

 

 

MPF930

 

 

RB2

VCC = 20 Volts

 

I

 

 

 

MUR105

 

RB1 selected for desired IB1

IB

B1

 

50 Ω

 

 

 

 

 

 

 

 

RBSOA

 

 

 

 

 

 

MTP12N10

 

 

 

 

 

 

 

L = 200 μH

 

 

 

 

 

 

 

 

 

IB2

 

500 μF

 

MJE210

 

 

RB2 = 0

 

 

 

 

 

 

VCC = 20 Volts

 

 

 

 

150 Ω

 

1 μF

 

*IC

 

 

 

 

 

R selected for desired I

 

 

 

 

 

 

 

B1

B1

 

L

 

 

 

 

 

 

 

 

 

 

Voff

 

 

 

 

 

A

T.U.T.

 

 

*Tektronix AM503

Scope Ð Tektronix

 

Lcoil (ICpk)

 

1N4246GP

 

t1 [

T1

+ V

 

 

*P6302 or Equivalent

7403 or Equivalent

VCC

*IB

 

 

 

 

 

T1 adjusted to obtain IC(pk)

0 V

 

 

Vclamp

VCC

Note: Adjust Voff to obtain desired VBE(off) at Point A.

 

± V

 

 

 

 

 

 

 

 

 

Table 2. Resistive Load Switching

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+15

 

 

 

 

 

 

 

H.P. 214

td and tr

 

 

 

 

 

 

ts and tf

1 μF

150 Ω

100 Ω

100 μF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MTP8P10

 

 

MTP8P10

 

OR

 

 

 

*IC

 

 

 

 

 

 

 

 

 

 

 

 

EQUIV.

*IB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P.G.

 

 

 

 

 

 

 

V(off) adjusted

 

 

 

 

 

 

RB1

 

 

 

 

T.U.T.

 

 

 

 

 

 

 

MPF930

 

 

 

 

 

RB = 8.5 Ω

 

 

RL

 

 

to give specified

 

 

 

 

 

 

 

50

 

 

 

 

 

off drive

+10 V

MPF930

 

 

 

 

 

A

 

 

 

VCC

 

 

 

 

 

 

 

 

 

 

RB2

 

 

 

 

 

 

 

 

 

 

 

 

 

MUR105

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50 Ω

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC

250 V

 

 

 

 

 

 

MTP12N10

 

 

 

 

VCC

250 Vdc

 

 

IC

10 A

500 μF

 

 

MJE210

 

 

 

 

 

 

 

 

 

IB1

1.0 A

 

 

 

1 μF

 

 

 

 

11 V

 

RL

 

25

Ω

 

 

 

150 Ω

 

 

 

 

V

 

 

 

 

 

IB2

Per Spec

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in

 

 

IC

 

10 A

 

 

 

 

Voff

 

 

 

 

 

 

 

0 V

 

 

 

 

 

RB1

15 Ω

 

 

 

 

 

 

 

 

 

 

IB

 

1 A

 

 

 

 

 

 

 

 

 

 

 

tr 15 ns

 

 

 

 

R

Per Spec

 

A

 

 

T.U.T.

 

 

 

 

 

 

 

 

 

 

 

 

B2

 

 

 

 

 

 

*IC

R

*Tektronix AM503

 

 

 

 

 

 

 

RL

25 Ω

 

 

 

*IB

 

 

 

L

 

 

 

 

 

 

 

 

 

 

 

 

VCC

 

*P6302 or Equivalent

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MEASURED FROM THE 90% POINT OF IB1

(t = 0)

(VOLTS)

16

 

 

 

I

 

= 10 A

 

 

 

14

 

 

 

 

 

 

 

VCE(dsat) = DYNAMIC SATURATION VOLTAGE AND IS

 

 

 

 

 

 

 

 

 

 

V

TO A MEASUREMENT POINT ON THE

 

 

 

 

 

 

 

μ

C

 

 

 

CE

 

 

 

 

 

 

t = 1

 

 

 

 

 

TIME AXIS (t1, t2 or t3 etc.)

 

 

 

VOLTAGE

12

 

 

s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COLLECTOR±EMITTER,

10

 

 

t = 2 μs

 

 

 

0

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

90% IB1

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IB1

 

 

 

 

 

 

 

 

 

 

MAXIMUM

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CE

0

TYPICAL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t1

t2

t3

 

t4

t5

t6

t7

V

 

 

 

 

 

 

 

 

0

 

t8

 

0.5

1

1.5

2

2.5

 

 

 

 

t, TIME

 

 

 

 

 

 

 

IB, BASE CURRENT (AMPS)

 

 

 

Figure 11. Definition of Dynamic Saturation

Figure 12. Dynamic Saturation Voltage

Measurement

Motorola Bipolar Power Transistor Device Data

5

MJ16110 MJW16110

DYNAMIC SATURATION VOLTAGE

For bipolar power transistors low DC saturation voltages are achieved by conductivity modulating the collector region. Since conductivity modulation takes a finite amount of time, DC saturation voltages are not achieved instantly at turn±on. In bridge circuits, two transistor forward converters, and two transistor flyback converters dynamic saturation characteristics are responsible for the bulk of dynamic losses. The MJ16110 has been designed specifically to minimize these losses. Performance is roughly four times better than the original version of MJ16010.

From a measurement point of view, dynamic saturation voltage is defined as collector±emitter voltage at a specific point in time after IB1 has been applied, where t = 0 is the 90% point on the IB1 rise time waveform, This definition is illustrated in Figure 11. Performance data was taken in the circuit that is shown in Figure 13. The 24 volt rail allows a Tektronix 2445 or equivalent scope to operate at 1 volt per division without input amplifier saturation.

Dynamic saturation performance is illustrated in Figure 12. The MJ16110 reaches DC saturation levels in approximately 2 μs, provided that sufficient base drive is provided. The dependence of dynamic saturation voltage upon base drive suggests a spike of IB1 at turn±on to minimize dynamic saturation losses, and also avoid overdrive at turn±off. However, in order to simulate worst case conditions the guaranteed dynamic saturation limits in this data sheet are specified with a constant level of IB1.

+ 24

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q1

MJ11012

 

 

 

 

 

1 k

 

 

1N5314

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

8

 

100

2.4

Ω

0.01

μF

 

 

 

 

μF

20 W

 

 

 

 

 

1N4111

 

 

 

1 k

7

 

 

 

100 Ω

 

 

2.4 mH

1N5831

 

 

 

 

1 W

 

 

 

 

 

 

 

 

 

10 k

 

U1

 

 

 

 

 

 

 

 

6

MC1455

100 pF

Q4

 

 

Q5

 

 

 

(OSCILLATOR)

 

 

 

 

 

2

3

IRFD9120

 

 

MTM8P08

 

 

 

 

 

 

 

 

 

 

 

 

0.1 μF

 

1

5

 

 

 

 

10 μF

 

 

 

 

0.01 μF

 

 

 

 

I C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

47 Ω

 

 

 

 

 

 

4

8

1.8 k

1 W

 

MUR405

I B

 

1N914

 

 

 

 

IRFD9123

500 Ω

 

 

 

V CE

 

 

 

7

 

 

MUR405

 

10

k

 

 

6

Q2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

Q6

 

 

 

 

 

 

 

 

 

 

MTP25N06

 

 

 

 

 

 

3

Q3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

5

 

IRFD113

 

 

 

 

 

 

 

 

0.01 μF

 

 

 

 

 

 

 

 

0.01 μF

 

 

 

 

 

 

Figure 13. Dynamic Saturation Test Circuit

GUARANTEED SAFE OPERATING AREA INFORMATION

IC, COLLECTOR CURRENT (AMPS)

50

TC = 25°C

 

 

 

20

MJ16110

10 μs

 

10

 

 

 

 

 

5

MJW16110

 

 

 

3

REGION II Ð

 

 

 

2

 

 

100

EXPANDED FBSOA USING

 

 

1

 

 

 

 

ns

MUR870 ULTRA-FAST

 

1 ms

0.5

dc

 

RECTIFIER, SEE FIGURE 16

 

 

0.3

 

 

 

II

0.2

 

 

 

 

 

 

 

0.1BONDING WIRE LIMIT

0.05THERMAL LIMIT

0.03SECONDARY BREAKDOWN

0.02LIMIT

0.01

1

2

3

5

10

20

30

50

100

200 300

500

1000

 

 

VCE, COLLECTOR±EMITTER VOLTAGE (VOLTS)

 

 

 

20

 

 

 

 

 

 

 

(AMPS)

18

 

 

 

 

 

 

 

16

 

 

 

 

 

IC/IB1 = 5

 

14

 

 

 

 

 

TJ 100°C

 

CURRENT

 

 

 

 

 

 

12

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

, COLLECTOR

 

 

 

 

 

 

 

8

 

 

 

 

 

 

 

6

 

 

 

 

VBE(off) = 1 to 5 V

 

4

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

I

2

 

 

 

VBE(off) = 0 V

 

 

 

 

 

 

 

 

 

0

100

200

300

400

500

600

700

 

0

 

 

VCE, COLLECTOR±EMITTER VOLTAGE (VOLTS)

 

Figure 14. Forward Bias Safe Operating Area

 

Figure 15. Reverse Bias Safe Operating Area

+15

 

 

 

 

 

VCE (650 V MAX)

 

 

 

 

 

 

 

 

1 μF

150 Ω 100 Ω

100 μF

 

 

 

 

 

 

 

MTP8P10

 

 

10 μF

 

 

 

 

 

MTP8P10

10 mH

MUR870

 

 

 

 

RB1

MUR1100

 

 

 

MPF930

 

 

 

 

 

 

 

 

 

 

 

 

+10

 

 

 

MUR105

 

 

MPF930

 

 

 

 

T.U.T.

 

 

 

 

 

 

 

50 Ω

 

MUR105

 

RB2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MTP12N10

 

 

 

500 μF

MJE210

 

 

 

 

 

 

 

 

 

 

 

 

 

150 Ω

1

μF

 

Note: Test Circuit for Ultra±fast FBSOA

 

 

 

 

 

 

 

 

 

Note: RB2 = 0 and VOff = ± 5 Volts

VOff

 

 

 

 

 

 

 

Figure 16. Switching Safe Operating Area

6

Motorola Bipolar Power Transistor Device Data

MJ16110 MJW16110

 

100

 

 

SECOND BREAKDOWN

 

 

 

 

 

 

(%)

80

 

 

DERATING

 

 

 

 

 

 

 

FACTOR

 

 

 

 

 

60

 

 

 

 

 

DERATING

 

 

 

 

 

 

THERMAL

 

 

 

 

40

DERATING

 

 

 

 

 

 

 

 

 

 

POWER

20

MJ16110

 

 

 

 

MJW16110

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

40

80

120

160

200

 

0

 

 

TC, CASE TEMPERATURE (°C)

 

 

Figure 17. Power Derating

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EFFECTIVE TRANSIENT THERMAL

 

0.7

D = 0.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESISTANCE (NORMALIZED)

0.3

0.2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.1

0.1

 

 

 

 

 

 

 

 

 

 

 

 

 

P(pk)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.07

 

 

 

 

 

 

 

 

RθJC(t) = r(t) RθJC

 

 

 

 

 

 

 

 

0.05

0.03

 

 

 

 

 

 

 

RθJC = 1 or 0.92°CW

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TJ(pk) ± TC = P(pk) RθJC(t)

 

 

t1

 

 

 

 

0.03

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t2

 

 

 

0.02

0.02

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r(t),

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DUTY CYCLE, D = t1/t2

 

 

 

SINGLE PULSE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.01

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.01

0.02 0.03

0.05

0.1

0.2

0.3

0.5

1

2

3

5

10

20

30

50

100

200

300

500

1000

t, TIME (ms)

Figure 18. Thermal Response

SAFE OPERATING AREA INFORMATION

FORWARD BIAS

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC ± VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data in Figure 14 is based on TC = 25_C; TJ(pk) is variable depending on power level. Second breakdown pulse

limits are valid for duty cycles to 10% but must be derated when TC 25_C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 14 may be found at any case temperature by using the appropriate curve on Figure 17.

TJ(pk) may be calculated from the data in Figure 18. At high case temperatures, thermal limitations will reduce the

power that can be handled to values less than the limitations imposed by second breakdown.

REVERSE BIAS

For inductive loads, high voltage and high current must be sustained simultaneously during turn±off, in most cases, with the base±to±emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be

accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Biased Safe Operating Area and represents the voltage±current condition allowable during reverse biased turn±off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 15 gives the RBSOA characteristics.

SWITCHMODE DESIGN CONSIDERATIONS

FBSOA

Allowable dc power dissipation in bipolar power transistors decreases dramatically with increasing collector±emitter voltage. A transistor which safely dissipates 100 watts at 10 volts will typically dissipate less than 10 watts at its rated

V(BR)CEO(sus). From a power handling point of view, current and voltage are not interchangeable (see Application Note

AN875).

TURN±ON

Safe turn±on load line excursions are bounded by pulsed FBSOA curves. The 10 μs curve applies for resistive loads, most capacitive loads, and inductive loads that are clamped by standard or fast recovery rectifiers. Similarly, the 100 ns curve applies to inductive loads which are clamped by ultra± fast recovery rectifiers, and are valid for turn±on crossover times less than 100 ns (AN952).

Motorola Bipolar Power Transistor Device Data

7

MJ16110 MJW16110

SWITCHMODE DESIGN CONSIDERATIONS (Cont.)

At voltages above 75% of V(BR)CEO(sus), it is essential to provide the transistor with an adequate amount of base

drive VERY RAPIDLY at turn±on. More specifically, safe operation according to the curves is dependent upon base current rise time being less than collector current rise time. As a general rule, a base drive compliance voltage in excess of 10 volts is required to meet this condition (see Application Note AN875).

TURN±OFF

A bipolar transistor's ability to withstand turn±off stress is dependent upon its forward base drive. Gross overdrive violates the RBSOA curve and risks transistor failure. For this reason, circuits which use fixed base drive are more likely to fail at light loads due to heavy overdrive (see Application Note AN875).

OPERATION ABOVE V(BR)CEO(sus)

When bipolars are operated above collector±emitter breakdown, base drive is crucial. A rapid application of adequate forward base current is needed for safe turn±on, as is a stiff negative bias needed for safe turn±off. Any hiccup in the base±drive circuitry that even momentarily violates either of these conditions will likely cause the transistor to fail.

Therefore, it is important to design the driver so that its output is negative in the absence of anything but a clean crisp input signal (see Application Note AN952).

RBSOA

Reversed Biased Safe Operating Area has a first order dependency on circuit configuration and drive parameters. The RBSOA curves in this data sheet are valid only for the conditions specified. For a comparison of RBSOA results in several types of circuits (see Application Note AN951).

DESIGN SAMPLES

Transistor parameters tend to vary much more from wafer lot to wafer lot, over long periods of time, than from one device to the next in the same wafer lot. For design evaluation it is advisable to use transistors from several different date codes.

BAKER CLAMPS

Many unanticipated pitfalls can be avoided by using Baker Clamps. MUR105 and MUR170 diodes are recommended for base drives less than 1 amp. Similarly, MUR405 and MUR470 types are well±suited for higher drive requirements (see Article Reprint AR131).

8

Motorola Bipolar Power Transistor Device Data

MJ16110 MJW16110

 

 

PACKAGE DIMENSIONS

 

 

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

NOTES:

 

 

 

 

 

C

 

 

 

 

 

 

1. DIMENSIONING AND TOLERANCING PER ANSI

 

 

 

 

 

 

 

Y14.5M, 1982.

 

 

 

 

 

±T±

SEATING

 

 

2. CONTROLLING DIMENSION: INCH.

 

 

E

 

 

PLANE

 

 

3. ALL RULES AND NOTES ASSOCIATED WITH

 

 

 

 

 

 

 

REFERENCED TO±204AA OUTLINE SHALL APPLY.

 

D 2 PL

K

 

 

 

 

 

 

 

 

 

 

 

 

INCHES

MILLIMETERS

 

 

 

 

 

 

 

 

 

0.13 (0.005) M

T

Q

M

Y

M

 

 

DIM

MIN

MAX

MIN

MAX

 

U

 

 

 

 

 

 

A

1.550 REF

39.37 REF

 

±Y±

 

 

 

 

B

±±±

1.050

±±±

26.67

V

L

 

 

 

 

 

 

 

 

 

 

C

0.250

0.335

6.35

8.51

 

2

 

 

 

 

 

 

D

0.038

0.043

0.97

1.09

 

 

B

 

 

 

 

E

0.055

0.070

1.40

1.77

H

G

 

 

 

 

 

G

0.430 BSC

10.92 BSC

1

 

 

 

 

 

 

H

0.215 BSC

5.46 BSC

 

 

 

 

 

 

 

K

0.440

0.480

11.18

12.19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

0.665 BSC

16.89 BSC

 

±Q±

 

 

 

 

 

 

N

±±±

0.830

±±±

21.08

 

0.13 (0.005) M

T

Y

M

 

 

 

Q

0.151

0.165

3.84

4.19

 

 

 

 

U

1.187 BSC

30.15 BSC

 

 

 

 

 

 

 

 

V

0.131

0.188

3.33

4.77

 

 

 

 

 

 

 

 

STYLE 1:

 

 

 

 

 

 

 

 

 

 

 

 

PIN 1. BASE

 

 

 

 

 

 

 

 

 

 

 

2. EMITTER

 

 

 

 

 

 

 

 

 

 

CASE: COLLECTOR

 

 

CASE 1±07

TO±204AA

(FORMERLY TO±3)

ISSUE Z

 

 

 

 

 

 

NOTES:

 

 

 

 

 

 

 

 

 

±T±

1.

DIMENSIONING AND TOLERANCING PER ANSI

 

±Q±

 

 

Y14.5M, 1982.

 

 

 

 

 

 

E

 

 

 

0.25 (0.010) M T

B

M

 

 

2.

CONTROLLING DIMENSION: MILLIMETER.

±B±

 

C

 

 

MILLIMETERS

INCHES

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

DIM MIN

MAX

MIN

MAX

 

 

 

 

 

 

A

20.40

20.90

0.803

0.823

 

 

 

 

U

 

 

 

 

 

 

L

 

B

15.44

15.95

0.608

0.628

 

 

 

 

 

 

C

4.70

5.21

0.185

0.205

 

 

 

 

 

 

 

 

A

 

 

 

 

 

D

1.09

1.30

0.043

0.051

 

R

 

 

 

 

E

1.50

1.63

0.059

0.064

 

 

 

 

 

 

F

1.80

2.18

0.071

0.086

 

 

1

2

3

 

 

G

5.45 BSC

0.215 BSC

 

 

 

 

H

2.56

2.87

0.101

0.113

 

 

 

 

 

 

 

J

0.48

0.68

0.019

0.027

 

 

 

 

 

±Y±

 

K

15.57

16.08

0.613

0.633

 

K

P

 

 

 

L

7.26

7.50

0.286

0.295

 

 

 

 

 

P

3.10

3.38

0.122

0.133

 

 

 

 

 

 

 

Q

3.50

3.70

0.138

0.145

 

 

 

 

 

 

 

R

3.30

3.80

0.130

0.150

 

 

F

 

 

H

 

U

5.30 BSC

0.209 BSC

 

 

 

V

 

V

3.05

3.40

0.120

0.134

 

 

 

 

J

 

 

 

 

 

 

 

 

D

 

 

 

 

 

 

 

 

 

 

G

 

 

 

STYLE 3:

 

 

 

0.25 (0.010) M

Y

Q S

 

 

 

 

PIN 1. BASE

 

 

 

 

 

 

 

2. COLLECTOR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. EMITTER

 

 

 

 

 

 

 

 

 

 

4. COLLECTOR

 

 

CASE 340F±03

TO±247AE

ISSUE E

Motorola Bipolar Power Transistor Device Data

9

MJ16110 MJW16110

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. ªTypicalº parameters can and do vary in different applications. All operating parameters, including ªTypicalsº must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

 

USA / EUROPE: Motorola Literature Distribution;

JAPAN: Nippon Motorola Ltd.; Tatsumi±SPD±JLDC, Toshikatsu Otsuki,

P.O. Box 20912; Phoenix, Arizona 85036. 1±800±441±2447

6F Seibu±Butsuryu±Center, 3±14±2 Tatsumi Koto±Ku, Tokyo 135, Japan. 03±3521±8315

MFAX: RMFAX0@email.sps.mot.com ± TOUCHTONE (602) 244±6609 HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,

INTERNET: http://Design±NET.com

51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852±26629298

MJ16110/D

*MJ16110/D*

Соседние файлы в папке Bipolar