Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

motorola / Bipolar / MJ10022R

.PDF
Источник:
Скачиваний:
2
Добавлен:
06.01.2022
Размер:
307.87 Кб
Скачать

MOTOROLA

SEMICONDUCTOR TECHNICAL DATA

Order this document by MJ10022/D

Designer's Data Sheet

SWITCHMODE Series

NPN Silicon Power Darlington Transistors with Base-Emitter Speedup Diode

The MJ10022 and MJ10023 Darlington transistors are designed for high±voltage, high±speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line±operated switchmode applications such as:

AC and DC Motor Controls

Switching Regulators

Inverters

Solenoid and Relay Drivers

Fast Turn±Off Times

150 ns Inductive Fall Time @ 25_C (Typ) 300 ns Inductive Storage Time @ 25_C (Typ)

Operating Temperature Range ± 65 to + 200_C

100_C Performance Specified for:

Reversed Biased SOA with Inductive Loads Switching Times with Inductive Loads Saturation Voltages

Leakage Currents

≈ 100

≈ 15

MJ10022

MJ10023

40 AMPERE

NPN SILICON

POWER DARLINGTON

TRANSISTORS

350 AND 400 VOLTS

250 WATTS

CASE 197A±05

TO±204AE (TO±3)

MAXIMUM RATINGS

Rating

Symbol

MJ10022

 

MJ10023

Unit

 

 

 

 

 

 

 

Collector±Emitter Voltage

VCEO

350

 

400

 

Vdc

Collector±Emitter Voltage

VCEV

450

 

600

 

Vdc

Emitter Base Voltage

VEB

 

80

 

Vdc

Collector Current Ð Continuous

IC

 

40

 

Adc

Ð Peak (1)

ICM

 

80

 

 

Base Current Ð Continuous

IB

 

20

 

Adc

Ð Peak (1)

IBM

 

40

 

 

Total Power Dissipation @ TC = 25_C

PD

 

250

 

Watts

@ TC = 100_C

 

 

143

 

 

Derate above 25_C

 

 

1.43

 

W/_C

 

 

 

 

 

Operating and Storage Junction Temperature Range

TJ, Tstg

± 65 to + 200

 

_C

THERMAL CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

Characteristic

Symbol

 

Max

 

Unit

 

 

 

 

 

 

Thermal Resistance, Junction to Case

RqJC

 

0.7

 

_C/W

Maximum Lead Temperature for Soldering

TL

 

275

 

_C

Purposes: 1/8″ from Case for 5 Seconds

 

 

 

 

 

 

 

 

 

 

 

 

 

(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle v 10%.

 

 

 

 

 

 

Designer's and SWITCHMODE are trademarks of Motorola, Inc.

Designer's Data for ªWorst Caseº Conditions Ð The Designer 's Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit curves Ð representing boundaries on device characteristics Ð are given to facilitate ªworst caseº design.

Motorola, Inc. 1995

MJ10022

MJ10023

 

 

 

 

 

 

 

 

ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Characteristic

 

Symbol

Min

Typ

Max

Unit

 

 

 

 

 

 

 

 

 

 

 

OFF CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Collector±Emitter Sustaining Voltage (Table 1)

MJ10022

VCEO(sus)

350

Ð

Ð

Vdc

 

(IC = 100 mA, IB = 0)

 

MJ10023

 

400

Ð

Ð

 

 

Collector Cutoff Current

 

 

ICEV

 

 

 

mAdc

 

(VCEV = Rated Value, VBE(off) = 1.5 Vdc)

 

 

Ð

Ð

0.25

 

 

(VCEV = Rated Value, VBE(off) = 1.5 Vdc, TC = 150_C)

 

Ð

Ð

5.0

 

 

Collector Cutoff Current

 

 

ICER

Ð

Ð

5.0

mAdc

 

(VCE = Rated VCEV, RBE = 50 Ω, TC = 100_C)

 

 

 

 

 

 

Emitter Cutoff Current

 

 

IEBO

Ð

Ð

175

mAdc

 

(VEB = 2.0 V, IC = O)

 

 

 

 

 

 

 

 

SECOND BREAKDOWN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Second Breakdown Collector Current with Base Forward Biased

IS/b

 

See Figure 13

 

 

Clamped Inductive SOA with Base Reverse Biased

RBSOA

 

See Figure 14

 

 

 

 

 

 

 

 

 

 

 

 

ON CHARACTERISTICS (1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DC Current Gain

 

 

hFE

50

Ð

600

Ð

 

(IC = 10 Adc, VCE = 5.0 V)

 

 

 

 

 

 

 

 

Collector±Emitter Saturation Voltage

 

VCE(sat)

 

 

 

Vdc

 

(IC = 20 Adc, IB = 1.0 Adc)

 

 

 

Ð

Ð

2.2

 

 

(IC = 40 Adc, IB = 5.0 Adc)

 

 

 

Ð

Ð

5.0

 

 

(IC = 20 Adc, IB = 10 Adc, TC = 100_C)

 

 

Ð

Ð

2.5

 

 

Base±Emitter Saturation Voltage

 

VBE(sat)

 

 

 

Vdc

 

(IC = 20 Adc, IB = 1.2 Adc)

 

 

 

Ð

Ð

2.5

 

 

(IC = 20 Adc, IB = 1.2 Adc, TC = 100_C)

 

 

Ð

Ð

2.5

 

 

Diode Forward Voltage

 

 

Vf

Ð

2.5

5.0

Vdc

 

(IF = 20 Adc)

 

 

 

 

 

 

 

 

DYNAMIC CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output Capacitance

 

 

Cob

150

Ð

600

pF

 

(VCB = 10 Vdc, IE = 0, ftest = 1.0 kHz)

 

 

 

 

 

 

 

SWITCHING CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Resistive Load (Table 1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Delay Time

 

 

 

 

td

Ð

0.03

0.2

μs

 

Rise Time

 

 

(VCC = 250 Vdc, IC = 20 A, IB1 = 1.0 Adc,

t

Ð

0.4

1.2

μs

 

 

 

 

VBE(off) = 5.0 V, tp = 50 μs,

r

 

 

 

 

 

Storage Time

 

 

ts

Ð

0.9

2.5

μs

 

 

 

Duty Cycle v 2.0%)

 

Fall Time

 

 

 

 

tf

Ð

0.3

0.9

μs

 

Inductive Load, Clamped (Table 1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Storage Time

 

 

(ICM = 20 A, VCEM = 250 V, IB1 = 1.0 A,

tsv

Ð

1.9

4.4

μs

 

Crossover Time

 

tc

Ð

0.6

2.0

μs

 

 

VBE(off) = 5 V, TC = 100_C)

 

Fall Time

 

 

 

 

tfi

Ð

0.3

Ð

μs

 

Storage Time

 

 

(ICM = 20 A, VCEM = 250 V, IB1 = 1.0 A,

tsv

Ð

1.0

Ð

μs

 

Crossover Time

 

tc

Ð

0.3

Ð

μs

 

 

VBE(off)

= 5 V, TC = 25_C)

 

Fall Time

 

 

 

 

tfi

Ð

0.15

Ð

μs

(1) Pulse Test: PW = 300 μs, Duty Cycle v 2%.

2

Motorola Bipolar Power Transistor Device Data

MJ10022 MJ10023

TYPICAL ELECTRICAL CHARACTERISTICS

 

300

 

 

 

 

 

 

 

200

 

 

 

TJ = 100°C

 

 

 

 

 

 

 

 

GAIN

 

 

TJ = 25°C

 

 

 

 

, DC CURRENT

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

FE

 

 

 

 

 

 

 

h

50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30

 

VCE = 5 V

 

 

 

 

 

1.0

2.0

5.0

10

20

40

 

0.4

 

 

 

IC, COLLECTOR CURRENT (AMPS)

 

 

Figure 1. DC Current Gain

(VOLTS)

3.0

 

 

 

 

 

 

2.7

 

IC/IB = 10

 

 

 

 

VOLTAGE

2.4

 

 

 

 

 

 

2.1

 

 

 

 

 

 

1.8

 

 

 

 

 

 

, COLLECTOR±EMITTER

 

 

 

 

 

 

1.5

 

 

 

 

 

 

1.2

 

 

 

 

 

 

0.9

 

VCE @ 25°C

 

 

 

 

 

 

 

 

 

 

0.6

 

VCE @ 100°C

 

 

 

 

0.3

 

 

 

 

 

 

 

 

 

 

 

CE

 

 

 

 

 

 

 

V

0.4

1.0

2.0

5.0

10

20

40

 

 

 

 

IC, COLLECTOR CURRENT (AMPS)

 

 

Figure 3. Collector±Emitter Saturation Voltage

 

104

 

 

 

 

 

 

 

VCE = 250 V

 

 

 

 

μA)

103

 

 

 

 

 

(

 

 

 

 

 

 

CURRENT

102

TJ = 125°C

 

 

 

 

100°C

 

 

 

 

,COLLECTOR

101

75°C

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

C

25°C

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

10 ±1

0

+ 0.2

+ 0.4

+ 0.6

+ 0.8

 

± 0.2

 

 

VBE, BASE±EMITTER VOLTAGE (VOLTS)

 

Figure 5. Collector Cutoff Region

(VOLTS)

5.0

 

 

 

 

 

 

 

 

 

4.5

 

 

 

 

 

 

 

TJ = 100°C

 

VOLTAGE

4.0

 

 

 

 

 

 

 

 

 

3.5

 

 

 

 

 

 

 

 

 

3.0

 

 

 

 

 

IC = 40 A

 

 

, COLLECTOR±EMITTER

 

 

 

 

 

 

 

2.5

 

 

 

 

 

 

 

 

 

2.0

 

 

 

IC = 20 A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.5

 

 

 

 

 

 

 

 

 

1.0

 

IC = 10 A

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

 

CE

 

 

 

 

 

 

 

 

 

 

V

0.01

0.02

0.05

0.1

0.2

0.5

1.0

2.0

5.0

10

 

 

 

 

 

IB, BASE CURRENT (AMP)

 

 

 

Figure 2. Collector Saturation Region

 

3.0

 

 

 

 

 

 

 

2.7

 

IC/IB = 10

 

 

 

 

 

 

 

 

 

 

 

, BASE±EMITTER

2.4

 

 

 

 

 

 

2.1

 

 

 

 

 

 

1.8

 

VBE @ 25°C

 

 

 

 

1.5

 

 

 

 

 

 

 

 

 

 

 

1.2

 

 

 

 

 

 

BE(sat)

 

VBE @ 100°C

 

 

 

 

0.9

 

 

 

 

 

 

 

 

 

 

 

V

0.6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.3

 

 

 

 

 

 

 

0.4

1.0

2.0

5.0

10

20

40

 

 

 

IC, COLLECTOR CURRENT (AMPS)

 

 

Figure 4. Base±Emitter Saturation Voltage

 

400

 

 

 

 

 

 

(pF)

200

 

 

 

 

 

 

 

 

 

 

 

 

 

C, CAPACITANCE

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50

 

 

 

 

 

 

 

40

10

 

50

 

200

400

 

4.5

20

100

VR, REVERSE VOLTAGE (VOLTS)

Figure 6. Cob, Output Capacitance

Motorola Bipolar Power Transistor Device Data

3

MJ10022

MJ10023

 

 

 

 

 

 

 

 

 

Table 1. Test Conditions for Dynamic Performance

 

 

 

 

 

VCEO(sus)

RBSOA AND INDUCTIVE SWITCHING

RESISTIVE SWITCHING

 

 

20 Ω

INDUCTIVE TEST CIRCUIT

 

TURN±ON TIME

 

 

 

 

 

 

 

1

 

 

1

 

 

 

 

 

INPUT CONDITIONS

 

 

 

 

 

 

 

 

 

SEE ABOVE FOR

 

 

obtain the forced

 

5 V

 

TUT

 

 

 

 

2

 

0

 

1

1N4937

Rcoil

IB1

 

 

 

 

2

INPUT

OR

Lcoil

 

 

 

 

 

EQUIVALENT

IB1 adjusted to

 

 

 

 

 

 

 

 

 

DETAILED CONDITIONS

Vclamp

V

h

 

desired

 

 

 

 

 

CC

FE

 

PW Varied to Attain

 

 

 

 

 

 

2

RS =

 

TURN±OFF TIME

 

IC = 100 mA

 

 

 

0.1 Ω

 

Use inductive switching

 

 

 

 

 

 

 

 

 

 

 

 

driver as the input to

 

 

 

 

 

 

the resistive test circuit.

CIRCUIT VALUES

Vclamp = VCEO(sus)

 

VCC = 20 V

 

 

 

Pulse Width = 25 μs

 

Lcoil = 10 mH, VCC = 10 V

 

Lcoil

= 180

μH

 

 

 

VCC = 250 V

 

Rcoil = 0.7 Ω

 

Rcoil = 0.05 Ω

 

 

 

RL = 12.5 Ω

 

 

OUTPUT WAVEFORMS

 

t1 Adjusted to

 

RESISTIVE TEST CIRCUIT

 

 

 

 

 

 

 

CIRCUITS

 

 

 

 

Obtain IC

 

 

VCC

 

ICM

tf Clamped

 

 

 

 

 

TUT

 

 

 

Lcoil

(ICM)

 

RL

 

 

t

 

 

t1 [

1

 

t

 

 

V

 

 

t

 

 

 

CC

2

 

 

1

f

 

 

 

 

 

 

TEST

VCEM

V

 

 

t2 [

Lcoil (ICM)

 

 

 

 

V

 

 

 

 

 

 

clamp

 

 

clamp

 

 

 

 

 

 

 

 

Test Equipment

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

TIME

 

t2

 

Scope Ð Tektronix

 

 

 

 

 

 

 

 

 

 

 

 

 

 

475 or Equivalent

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ICM

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

VCEM

Vclamp

(AMPS)

9.0

 

 

 

 

 

 

 

 

 

 

 

 

90% VCEM

90% ICM

 

8.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.0

 

 

 

 

 

 

 

 

 

 

IC

t

t

 

t

t

CURRENT

 

 

 

 

 

 

 

 

 

 

 

sv

rv

 

fi

ti

5.0

 

 

 

 

 

 

 

 

 

 

 

 

 

tc

 

 

BASE,

6.0

 

 

 

 

 

 

 

 

 

 

I

90% I

10% VCEM

ICM

2% IC

 

 

 

 

 

I

 

 

= 1 A

 

VCE

 

10%

 

 

4.0

 

 

 

 

I

C

= 20 A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

B1

 

 

 

 

B2(pk)

3.0

 

 

 

 

 

B1

 

 

 

 

 

 

 

 

 

2.0

 

 

 

 

Vclamp

= 250 V

 

 

 

 

 

 

 

I

 

 

 

 

TJ = 25°C

 

 

 

 

 

 

 

 

1.0

 

 

 

 

 

 

 

 

 

 

 

 

TIME

 

 

 

 

0

1.0

2.0

3.0

4.0

5.0

 

6.0

7.0

8.0

 

 

 

 

 

 

 

 

 

VBE(off), REVERSE BASE VOLTAGE (VOLTS)

 

Figure 7. Inductive Switching Measurements

Figure 8. Typical Peak Reverse Base Current

 

2.0

 

 

 

 

 

 

 

 

 

1.75

tsv @ 100°C

 

 

 

ICM = 20 A

 

 

 

 

 

 

 

 

IB1 = 1 A

 

 

 

1.5

 

 

 

 

 

VCEM = 250 V

 

( μs)

1.25

 

tc @ 100°C

 

 

 

 

 

 

1.0

 

 

 

 

 

 

 

t, TIME

 

 

 

 

 

 

 

 

0.75

 

 

 

tsv @ 25°C

 

 

 

 

 

 

 

 

 

 

 

0.5

 

tc @ 25°C

 

 

 

 

 

 

 

0.25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

 

0

VBE(off), BASE±EMITTER VOLTAGE (VOLTS)

Figure 9. Typical Inductive Switching Times

4

Motorola Bipolar Power Transistor Device Data

MJ10022 MJ10023

SWITCHING TIMES NOTE

In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined.

tsv = Voltage Storage Time, 90% IB1 to 10% VCEM trv = Voltage Rise Time, 10±90% VCEM

tfi = Current Fall Time, 90±10% ICM tti = Current Tail, 10±2% ICM

tc = Crossover Time, 10% VCEM to 10% ICM

An enlarged portion of the inductive switching waveform is

shown in Figure 7 to aid on the visual identity of these terms. For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained us-

ing the standard equation from AN±222A:

PSWT = 1/2 VCCIC(tc)f

In general, trv + tfi ` tc. However, at lower test currents this relationship may not be valid.

As is common with most switching transistors, resistive switching is specified at 25_C and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user orinented specifications which make this a ªSWITCHMODEº transistor are the inductive switching speeds (tc and tsv) which are guaranteed at 100_C.

t, TIME ( μs)

 

 

 

 

 

RESISTIVE SWITCHING

 

 

 

 

 

 

2.0

VCC = 250 V

 

 

 

 

 

2.0

VCC = 250 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.0

IC/IB1 = 20

 

 

 

 

 

1.0

IC/IB1 = 20

 

 

ts

 

 

 

TJ = 25°C

 

 

 

 

 

 

VBE(off) = 5 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

 

 

 

 

μs)

 

 

 

 

 

 

t

 

 

tr

 

 

 

(

 

 

 

 

 

 

f

0.2

 

 

 

 

TIMEt,

0.2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.1

 

 

 

 

 

 

0.1

 

 

 

 

 

 

 

 

 

 

 

 

 

0.05

 

 

 

 

 

 

0.05

 

 

 

 

td

 

0.02

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.02

 

 

 

 

 

 

 

 

 

 

 

 

 

0.4

1.0

2.0

5.0

10

20

40

0.4

1.0

2.0

5.0

10

20

40

 

IC, COLLECTOR CURRENT (AMPS)

 

 

 

IC, COLLECTOR CURRENT (AMPS)

 

 

Figure 10. Typical Turn±On Switching Times

Figure 11. Typical Turn±Off Switching Times

 

 

1.0

 

 

 

 

 

 

 

0.5

D = 0.5

 

 

 

 

 

RESISTANCE(NORMALIZED)

 

 

 

 

 

r(t), TRANSIENT THERMAL

0.2

0.2

 

 

 

 

 

 

 

 

 

0.1

0.1

 

RθJC(t) = r(t) RθJC

P(pk)

 

 

 

 

RθJC = 0.7°C/W MAX

 

 

0.05

 

 

D CURVES APPLY FOR POWER

 

 

 

 

PULSE TRAIN SHOWN

t1

 

 

SINGLE PULSE

 

 

 

 

READ TIME AT t1

t

 

 

 

 

 

 

TJ(pk) ± TC = P(pk) RθJC(t)

2

 

 

 

 

 

 

DUTY CYCLE, D = t1/t2

 

 

 

 

 

 

 

 

 

 

0.01

1.0

10

100

1000

10000

 

 

0.1

t, TIME (ms)

Figure 12. Thermal Response

Motorola Bipolar Power Transistor Device Data

5

MJ10022 MJ10023

The Safe Operating Area figures shown in Figures 13 and 14 are specified for these devices under the test conditions shown.

 

100

 

 

 

 

 

 

 

 

(AMPS)

50

 

 

 

 

10 μs

 

 

20

 

 

 

(TURN±ON SWITCHING)

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

CURRENT

5.0

 

 

 

dc

 

 

 

 

2.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.0

 

 

 

 

 

 

 

 

, COLLECTOR

 

 

 

 

 

 

 

 

0.5

 

BONDING WIRE LTD

 

 

 

 

0.2

 

 

 

 

 

 

THERMAL LTD

 

 

 

 

 

0.1

 

SECOND BREAKDOWN LTD

 

 

 

0.05

 

 

 

 

 

 

 

 

C

 

 

TC = 25°C

 

MJ10022

 

I

 

 

 

 

 

0.02

 

 

 

 

 

 

 

 

 

 

MJ10023

 

 

0.01

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.0

2.0

5.0

10

20

50

100

200

400

VCE, COLLECTOR±EMITTER VOLTAGE (VOLTS)

Figure 13. Maximum Forward Bias Safe

Operating Area

(AMPS)

80

 

 

 

 

 

IC/IB

20

 

CURRENT

 

 

 

 

 

25°C TJ 100°C

70

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COLLECTOR

60

 

 

 

 

 

TURN±OFF LOAD LINE

50

 

 

 

 

 

FOR MJ10023

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THE LOCUS FOR

 

 

 

 

 

 

 

 

 

 

40

 

 

 

 

 

MJ10022 IS 50 V LESS

PEAK,

30

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CM

10

 

 

RBE = 24 Ω

 

2 V VBE(off) 8 V

I

 

 

 

 

 

 

 

 

0

0

100

200

300

400

500

600

700

VCEM, PEAK COLLECTOR±EMITTER VOLTAGE (VOLTS)

Figure 14. Maximum RBSOA, Reverse Bias

Safe Operating Area

SAFE OPERATING AREA INFORMATION

FORWARD BIAS

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC ± VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 13 is based on TC = 25_C; TJ(pk) is variable depending on power level. Second breakdown pulse

limits are valid for duty cycles to 10% but must be derated when TC 25°C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 13 may be found at any case temperature by using the appropriate curve on Figure 15.

TJ(pk) may be calculated from the data in Figure 12. At high case temperatures, thermal limitations will reduce the

power that can be handled to values less than the limitations imposed by second breakdown.

REVERSE BIAS

For inductive loads, high voltage and high current must be sustained simultaneously during turn±off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage±current condition allowable during reverse biased turn±off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 14 gives the RBSOA characteristics.

 

100

 

 

 

 

 

(%)

 

 

 

SECOND BREAKDOWN

 

80

 

 

 

DERATING

 

FACTOR

60

 

 

 

 

 

DERATING

 

 

 

 

 

40

 

 

THERMAL

 

 

 

 

 

 

 

POWER

 

 

 

DERATING

 

 

20

 

 

 

 

 

 

0

40

80

120

160

200

 

0

 

 

 

TC, CASE TEMPERATURE (°C)

 

Figure 15. Power Derating

6

Motorola Bipolar Power Transistor Device Data

MJ10022 MJ10023

PACKAGE DIMENSIONS

 

A

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

C

±T±

SEATING

 

 

NOTES:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. DIMENSIONING AND TOLERANCING PER ANSI

 

E

 

 

PLANE

 

 

Y14.5M, 1982.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D 2 PL

K

 

 

 

 

 

2. CONTROLLING DIMENSION: INCH.

 

 

 

 

 

 

 

 

INCHES

MILLIMETERS

 

 

 

 

 

 

 

 

 

0.30 (0.012) M

T

Q

M

Y

M

 

 

DIM

MIN

MAX

MIN

MAX

 

U

 

 

 

 

 

 

A

1.530 REF

38.86 REF

 

±Y±

 

 

 

 

B

0.990

1.050

25.15

26.67

V

L

 

 

 

 

 

 

 

 

 

 

C

0.250

0.335

6.35

8.51

 

2

 

 

 

 

 

 

D

0.057

0.063

1.45

1.60

 

 

B

 

 

 

 

E

0.060

0.070

1.53

1.77

H

G

 

 

 

 

 

G

0.430 BSC

10.92 BSC

1

 

 

 

 

 

 

H

0.215 BSC

5.46 BSC

 

 

 

 

 

 

 

K

0.440

0.480

11.18

12.19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

0.665 BSC

16.89 BSC

 

±Q±

 

 

 

 

 

 

N

0.760

0.830

19.31

21.08

 

0.25 (0.010) M

T

Y

M

 

 

 

Q

0.151

0.165

3.84

4.19

 

 

 

 

U

1.187 BSC

30.15 BSC

 

 

 

 

 

 

 

 

V

0.131

0.188

3.33

4.77

 

 

 

 

 

 

 

 

STYLE 1:

 

 

 

 

 

 

 

 

 

 

 

PIN 1. BASE

 

 

 

 

 

 

 

 

 

 

 

 

2. EMITTER

 

 

 

 

 

 

 

 

 

 

CASE: COLLECTOR

 

 

CASE 197A±05

TO±204AE (TO±3)

ISSUE J

Motorola Bipolar Power Transistor Device Data

7

MJ10022 MJ10023

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. ªTypicalº parameters can and do vary in different applications. All operating parameters, including ªTypicalsº must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

 

USA / EUROPE: Motorola Literature Distribution;

JAPAN: Nippon Motorola Ltd.; Tatsumi±SPD±JLDC, Toshikatsu Otsuki,

P.O. Box 20912; Phoenix, Arizona 85036. 1±800±441±2447

6F Seibu±Butsuryu±Center, 3±14±2 Tatsumi Koto±Ku, Tokyo 135, Japan. 03±3521±8315

MFAX: RMFAX0@email.sps.mot.com ± TOUCHTONE (602) 244±6609 HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,

INTERNET: http://Design±NET.com

51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852±26629298

MJ10022/D

*MJ10022/D*

Соседние файлы в папке Bipolar