Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

motorola / Bipolar / MJ10009R

.PDF
Источник:
Скачиваний:
2
Добавлен:
06.01.2022
Размер:
241.58 Кб
Скачать

MOTOROLA

SEMICONDUCTOR TECHNICAL DATA

Order this document by MJ10009/D

Designer's Data Sheet

SWITCHMODE Series

NPN Silicon Power Darlington Transistor with Base-Emitter Speedup Diode

The MJ10009 Darlington transistor is designed for high±voltage, high±speed, power switching in Inductive circuits where fall time is critical. It is particularly suited for line operated switchmode applications such as:

Switching Regulators

Inverters

Solenoid and Relay Drivers

Motor Controls

Deflection Circuits

Fast Turn±Off Times

1.6 μs (max) Inductive Crossover Time ± 10 A, 100_C 3.5 μs (max) Inductive Storage Time ± 10 A, 100_C

Operating Temperature Range ±65 to +200_C

100_C Performance Specified for:

≈ 100

≈ 15

MJ10009*

*Motorola Preferred Device

20 AMPERE

NPN SILICON

POWER DARLINGTON

TRANSISTORS

450 and 500 VOLTS

175 WATTS

CASE 1±07 TO±204AA (TO±3)

Reversed Biased SOA with Inductive Loads

Switching Times with Inductive Loads

Saturation Voltages

Leakage Currents

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

 

 

 

 

Collector±Emitter Voltage

VCEO

500

Vdc

Collector±Emitter Voltage

VCEX

500

Vdc

 

 

 

 

Collector±Emitter Voltage

VCEV

700

Vdc

Emitter Base Voltage

VEB

8

Vdc

Collector Current Ð Continuous

IC

20

Adc

Ð Peak (1)

ICM

30

 

Base Current Ð Continuous

IB

2.5

Adc

Ð Peak (1)

IBM

5

 

Total Power Dissipation @ TC = 25_C

PD

175

Watts

@ TC = 100_C

 

100

 

Derate above 25_C

 

1

_

 

 

 

W/ C

Operating and Storage Junction Temperature Range

TJ, Tstg

± 65 to +200

_C

THERMAL CHARACTERISTICS

Characteristic

Symbol

Max

Unit

 

 

 

 

Thermal Resistance, Junction to Case

RqJC

1

_C/W

Maximum Lead Temperature for Soldering Purposes: 1/8″ from Case for 5 Seconds

TL

275

_C

(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle v 10%.

Designer's and SWITCHMODE are trademarks of Motorola, Inc.

Designer's Data for ªWorst Caseº Conditions Ð The Designer 's Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit curves Ð representing boundaries on device characteristics Ð are given to facilitate ªworst caseº design.

Preferred devices are Motorola recommended choices for future use and best overall value.

REV 2

Motorola, Inc. 1995

MJ10009

ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted)

 

 

Characteristic

Symbol

Min

 

Typ

 

Max

Unit

 

 

 

 

 

 

 

 

 

OFF CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Collector Emitter Sustaining Voltage (Table 1)

VCEO(sus)

500

 

Ð

 

Ð

Vdc

(IC = 100 mA, IB = 0, Vclamp = Rated VCEO)

 

 

 

 

 

 

 

Collector Emitter Sustaining Voltage (Table 1, Figure 12)

VCEX(sus)

 

 

 

 

 

Vdc

(IC = 2 A, Vclamp = Rated VCEX, TC = 100_C, VBE(off) = 5 V)

 

500

 

Ð

 

Ð

 

(IC = 10 A, Vclamp = Rated VCEX, TC = 100_C, VBE(off) = 5 V)

 

375

 

Ð

 

Ð

 

Collector Cutoff Current

 

ICEV

 

 

 

 

 

mAdc

(VCEV = Rated Value, VBE(off) = 1.5 Vdc)

 

Ð

 

Ð

 

0.25

 

(VCEV = Rated Value, VBE(off) = 1.5 Vdc, TC = 150_C)

 

Ð

 

Ð

 

5

 

Collector Cutoff Current

 

ICER

Ð

 

Ð

 

5

mAdc

(VCE = Rated VCEV, RBE = 50 Ω, TC = 100_C)

 

 

 

 

 

 

 

Emitter Cutoff Current

 

IEBO

Ð

 

Ð

 

175

mAdc

(VEB = 2 Vdc, IC = 0)

 

 

 

 

 

 

 

 

SECOND BREAKDOWN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Second Breakdown Collector Current with base forward biased

IS/b

 

See Figure 11

 

 

ON CHARACTERISTICS (2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DC Current Gain

 

hFE

 

 

 

 

 

Ð

(IC = 5 Adc, VCE = 5 Vdc)

 

40

 

Ð

 

400

 

(IC = 10 Adc, VCE = 5 Vdc)

 

30

 

Ð

 

300

 

Collector±Emitter Saturation Voltage

VCE(sat)

 

 

 

 

 

Vdc

(IC = 10 Adc, IB = 500 mAdc)

 

Ð

 

Ð

 

2

 

(IC = 20 Adc, IB = 2 Adc)

 

Ð

 

Ð

 

3.5

 

(IC = 10 Adc, IB = 500 mAdc, TC = 100_C)

 

Ð

 

Ð

 

2.5

 

Base±Emitter Saturation Voltage

VBE(sat)

 

 

 

 

 

Vdc

(IC = 10 Adc, IB = 500 mAdc)

 

Ð

 

Ð

 

2.5

 

(IC = 10 Adc, IB = 500 mAdc, TC = 100_C)

 

Ð

 

Ð

 

2.5

 

Diode Forward Voltage (1)

Vf

Ð

 

3

 

5

Vdc

(IF = 10 Adc)

 

 

 

 

 

 

 

 

DYNAMIC CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Small±Signal Current Gain

hfe

8

 

Ð

 

Ð

Ð

(IC = 1 Adc, VCE = 10 Vdc, ftest = 1 MHz)

 

 

 

 

 

 

 

Output Capacitance

 

Cob

100

 

Ð

 

325

pF

(VCB = 10 Vdc, IE = 0, ftest = 100 kHz)

 

 

 

 

 

 

 

SWITCHING CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Resistive Load (Table 1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Delay Time

 

 

td

Ð

 

0.12

 

0.25

μs

Rise Time

 

(VCC = 250 Vdc, IC = 10 A,

t

Ð

 

0.5

 

1.5

μs

 

 

IB1 = 500 mA, VBE(off) = 5 Vdc, tp = 25 μs

r

 

 

 

 

 

 

Storage Time

 

ts

Ð

 

0.8

 

2.0

μs

 

Duty Cycle v 2%).

 

 

Fall Time

 

 

tf

Ð

 

0.2

 

0.6

μs

Inductive Load, Clamped (Table 1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Storage Time

 

(IC = 10 A(pk), Vclamp = 250 V, IB1 = 500 mA,

tsv

Ð

 

1.5

 

3.5

μs

Crossover Time

 

VBE(off) = 5 Vdc, TC = 100_C)

t

Ð

 

0.36

 

1.6

μs

 

 

 

c

 

 

 

 

 

 

Storage Time

 

(IC = 10 A(pk), Vclamp = 250 V, IB1 = 500 mA,

tsv

Ð

 

0.8

 

Ð

μs

Crossover Time

 

VBE(off) = 5 Vdc)

t

Ð

 

0.18

 

Ð

μs

 

 

 

c

 

 

 

 

 

 

(1) The internal Collector±to±Emitter diode can eliminate the need for an external diode to clamp inductive loads.

(1)Tests have shown that the Forward Recovery Voltage (Vf) of this diode is comparable to that of typical fast recovery rectifiers.

(2)Pulse Test: PW = 300 μs, Duty Cycle 2%.

2

Motorola Bipolar Power Transistor Device Data

hFE, DC CURRENT GAIN

MJ10009

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TYPICAL CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

400

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(VOLTS)

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

200

 

 

 

 

 

 

 

 

 

 

 

TJ = 150°C

 

 

 

 

 

 

 

 

 

VOLTAGE

2.6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IC

=

5

A

 

 

 

 

10

A

 

 

 

 

 

 

 

20 A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COLLECTOR±EMITTER

2.2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

 

25°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TJ = 25

°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCE =

5 V

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.5

1

2

 

5

 

10

20

 

0.05

0.1

0.2

0.5

 

 

1

2

3

 

 

 

 

 

 

 

0.2

 

 

 

0.03

 

 

 

 

 

 

 

 

IC, COLLECTOR CURRENT (AMP)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IB, BASE CURRENT (AMP)

 

 

 

 

 

 

 

 

 

 

 

Figure 1. DC Current Gain

 

 

 

 

 

 

 

 

 

Figure 2. Collector Saturation Region

 

V, VOLTAGE (VOLTS)

2.4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

IC

/IB

= 10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2

 

 

 

 

 

 

 

 

 

 

 

TJ

= ± 55

°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.8

 

 

 

 

 

 

 

 

 

 

 

 

25°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

150°

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.3

0.5

0.7

1

2

3

 

5

7

10

20

0.2

 

IC, COLLECTOR CURRENT (AMP)

Figure 3. Collector±Emitter Saturation Voltage

 

2.8

 

 

 

 

 

 

 

 

 

 

 

 

 

VBE(sat) @ IC/IB = 10

 

 

 

 

 

 

2.4

 

VBE(on) @ VCE = 3 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(VOLTS)

2

 

 

 

 

TJ = ± 55°C

 

 

 

VOLTAGE

 

 

 

 

 

 

 

25°C

 

 

 

1.6

 

 

 

 

 

 

25°C

 

 

 

 

 

 

 

 

 

 

 

 

 

V,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2

 

 

 

 

 

 

150°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.8

0.3

0.5

0.7

1

2

3

5

7

10

20

 

0.2

IC, COLLECTOR CURRENT (AMP)

Figure 4. Base-Emitter Voltage

 

104

 

 

 

 

 

 

1000

 

 

 

 

 

 

 

 

 

 

 

V

CE

= 250 V

 

 

 

 

700

 

 

 

 

 

 

 

 

°

 

μA)

 

 

 

 

 

(pF)

 

 

 

 

 

 

 

TJ = 25 C

 

103

 

 

 

 

 

500

 

 

 

 

 

 

 

 

 

 

COLLECTOR, CURRENT (

100

 

 

 

 

 

OUTPUT, CAPACITANCE

 

 

 

 

 

 

 

Cob

 

 

TJ = 125°C

 

 

 

100

 

 

 

 

 

 

 

 

 

 

102

 

100°C

 

 

 

 

300

 

 

 

 

 

 

 

 

 

 

 

101

 

75°C

 

 

 

 

200

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REVERSE

FORWARD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ob

 

 

 

 

 

 

 

 

 

 

 

C

 

 

25°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

C

70

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10±1

 

0

+ 0.2

+ 0.4

+ 0.6

+ 0.8

50

1

2

4

6

10

20

40 60

100

200

400

 

± 0.2

 

0.4 0.6

 

 

 

VBE, BASE±EMITTER VOLTAGE (VOLTS)

 

 

 

 

VR, REVERSE VOLTAGE (VOLTS)

 

 

 

Figure 5. Collector Cutoff Region

Figure 6. Output Capacitance

Motorola Bipolar Power Transistor Device Data

3

MJ10009

Table 1. Test Conditions for Dynamic Performance

 

VCEO(sus)

 

RBSOA AND INDUCTIVE SWITCHING

 

 

 

 

 

 

 

 

 

 

+ V DRIVE

 

 

DRIVER SCHEMATIC

 

 

0.005 μF

 

 

 

1

 

 

 

 

10

 

RB

 

 

 

 

 

 

 

 

 

20

For inductive loads pulse width

 

 

 

 

 

INPUT CONDITIONS

0

is adjusted to obtain specified IC

 

 

 

 

 

 

 

 

2N3762

 

0.005

 

 

 

 

 

 

 

 

 

 

 

+

 

10

 

 

 

2

 

PG

±

10 μF

 

 

 

 

 

 

 

10

MTP3055E

 

 

HP214

 

 

 

 

 

IN

 

 

 

 

 

 

 

 

 

 

 

 

PW Varied to Attain

± 38 V

 

 

 

 

 

1

 

 

 

 

 

 

2

 

IC = 100 mA

 

50

 

0.05

μF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.0 μF

 

50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ ±

 

 

CIRCUIT VALUES

Vclamp = VCEO(sus)

VCC = 20 V

 

1000

100

 

± Voff

 

 

 

 

 

Lcoil = 10 mH, VCC = 10 V

Lcoil = 180

μH

 

 

 

 

MTP3055E

 

Rcoil = 0.7 Ω

Rcoil = 0.05 Ω

 

 

 

 

 

 

 

Vclamp = Rated VCEX Value

 

 

 

 

DRIVE

 

INDUCTIVE TEST CIRCUIT

OUTPUT WAVEFORMS

 

 

 

 

 

 

IC

 

tf UNCLAMPED [ t2

t1 Adjusted to

 

 

 

 

 

Obtain I

CIRCUITS

TUT

 

 

 

 

 

 

C

 

Rcoil

 

 

 

 

Lcoil (ICpk)

1

1N4937

IC(pk)

 

tf CLAMPED

t1

INPUT

OR

Lcoil

 

 

VCC

EQUIVALENT

 

 

t

 

Lcoil (ICpk)

SEE ABOVE FOR

 

 

 

 

 

 

TEST

DETAILED CONDITIONS

Vclamp

VCC

t1

tf

 

t2

VClamp

2

RS =

 

VCE

 

 

Test Equipment

 

 

 

 

 

 

0.1 Ω

 

VCE or

 

 

Scope Ð Tektronix

 

 

 

 

 

 

475 or Equivalent

 

 

 

 

Vclamp

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TIME

 

t

 

 

 

 

 

 

 

t2

 

 

 

 

 

 

 

 

 

 

RESISTIVE SWITCHING

1

2

IB1

IB1 adjusted to obtain the forced hFE desired

TURN±OFF TIME

Use inductive switching driver as the input to the resistive test circuit.

VCC = 250 V

RL = 25 Ω

Pulse Width = 25 μs

RESISTIVE TEST CIRCUIT

 

TUT

1

RL

2

VCC

 

 

ICM

 

VCEM

Vclamp

IC

 

90% VCEM

90% ICM

 

tsv

trv

tfi

tti

 

 

tc

 

 

VCE

 

 

 

 

I

 

10% VCEM

10%

2% I

B

90% IB1

 

ICM

 

 

C

TIME

SWITCHING TIMES NOTE

In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined.

tsv = Voltage Storage Time, 90% IB1 to 10% Vclamp trv = Voltage Rise Time, 10±90% Vclamp

tfi = Current Fall Time, 90±10% IC tti = Current Tail, 10±2% IC

tc = Crossover Time, 10% Vclamp to 10% IC

Figure 7. Inductive Switching Measurements

4

Motorola Bipolar Power Transistor Device Data

MJ10009

TYPICAL CHARACTERISTICS

SWITCHING TIMES NOTE (continued)

For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN±222.

PSWT = 1/2 VCC IC (tc) f

Typical inductive switching waveforms are shown in Fig-

ure 7. In general, trv + tfi ] tc. However, at lower test currents this relationship may not be valid.

As is common with most switching transistors, resistive switching is specified at 25_C and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user oriented specifications which make this a ªSWITCHMODEº transistor are the inductive switching speeds (tc and tsv) which are guaranteed at 100_C.

RESISTIVE SWITCHING PERFORMANCE

t, TIME ( μs)

2

1

0.5

0.2

0.1

1

 

 

 

 

 

 

 

 

 

 

 

 

 

1.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tP = 25

μs, DUTY

CYCLE v 2%

 

 

 

 

 

 

 

 

VCC =

250 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IC/IB = 20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.5

 

VBE(off) = 5

V

 

 

 

 

 

 

 

 

 

 

 

 

V

CC

=

250 V

 

 

 

 

 

 

 

TJ = 25°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IC/IB =

20

 

 

 

 

 

 

(μs)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TJ = 25

°C

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tr

 

 

TIME

 

 

s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.2

 

 

tP =

25 μs, DUTY CYCLE

v

2%

 

 

 

 

 

tf

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

td

 

 

0.1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.05

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

5

 

 

10

20

 

2

5

 

 

 

 

10

20

 

 

 

 

1

 

 

 

 

 

IC, COLLECTOR CURRENT (AMP)

 

 

 

 

 

 

 

 

 

 

IC, COLLECTOR CURRENT (AMP)

 

 

 

 

 

 

Figure 8. Turn-On Time

 

 

 

 

 

 

 

 

 

 

Figure 9. Turn-Off Time

 

 

 

 

 

TRANSIENT THERMAL RESISTANCE

(NORMALIZED)

r(t),

 

1.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.7

D = 0.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.3

0.2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.1

0.05

 

 

 

 

 

 

ZθJC (t) = r(t) RθJC

 

P(pk)

 

 

 

0.07

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RθJC = 1.0°C/W MAX

 

 

 

 

 

 

0.05

 

 

 

 

 

 

 

 

 

 

 

 

 

0.02

 

 

 

 

 

 

D CURVES APPLY FOR POWER

 

 

 

 

 

 

 

 

 

 

 

 

PULSE TRAIN SHOWN

 

 

 

 

 

 

0.03

 

 

 

 

 

 

 

 

 

t1

 

 

 

 

 

 

 

 

 

 

READ TIME AT t1

 

 

 

 

 

0.02

0.01

 

 

 

 

 

 

 

 

t2

 

 

 

SINGLE PULSE

 

 

 

 

TJ(pk) ± TC = P(pk) ZθJC(t)

 

 

 

 

 

 

 

 

 

 

DUTY CYCLE, D = t1/t2

 

 

0.01

0.02

0.05

0.1

0.2

0.5

1.0

2.0

5.0

10

20

50

100

200

500

1 k

0.01

 

 

 

 

 

 

 

t, TIME (ms)

 

 

 

 

 

 

 

Figure 10. Thermal Response

Motorola Bipolar Power Transistor Device Data

5

MJ10009

The Safe Operating Area figures shown in Figures 11 and 12 are

specified ratings for these devices under the test conditions

shown.

 

 

 

 

 

 

 

 

50

 

 

 

 

 

10 μs

 

 

20

 

 

 

 

 

(AMP)

 

 

 

 

 

 

 

 

10

 

 

 

 

100 μs

 

 

5

 

 

 

 

 

 

CURRENT

 

 

 

 

 

 

 

 

2

 

 

 

 

1 ms

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

0.5

 

 

dc

 

 

 

COLLECTOR

 

 

 

 

 

 

 

0.2

 

 

 

 

 

 

 

0.1

 

BONDING WIRE LIMIT

 

 

 

 

0.05

 

THERMAL LIMIT @ TC = 25°C

 

 

,

 

 

 

(SINGLE PULSE)

 

 

 

C

0.02

 

 

 

 

I

 

 

SECOND BREAKDOWN LIMIT

 

 

 

 

 

 

 

 

 

0.01

 

 

 

 

 

 

 

 

 

MJ10009

 

 

0.005

 

 

 

 

 

 

10

20

50

100

200

450 600

 

 

6

 

 

 

 

 

 

 

 

500

VCE, COLLECTOR±EMITTER VOLTAGE (VOLTS)

Figure 11. Forward Bias Safe Operating Area

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100°C

 

 

 

 

 

 

 

 

 

(AMP)

18

 

TC =

 

 

 

 

 

 

 

 

 

16

 

IC/IB1

20

 

 

 

 

 

 

 

 

 

CURRENT

 

 

 

 

 

 

 

 

 

 

 

 

 

14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COLLECTOR,

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

V

 

=

2 V

 

 

 

 

 

 

 

 

 

 

VBE(off) =

5 V

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

C

4

 

 

 

 

 

 

BE(off)

 

0 V

 

 

 

 

I

2

 

 

 

 

 

VBE(off) =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

200

 

300

400

500

 

0

 

VCE, COLLECTOR±EMITTER VOLTAGE (VOLTS)

Figure 12. Reverse Bias Switching

Safe Operating Area (MJ10009)

SAFE OPERATING AREA INFORMATION

FORWARD BIAS

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC ± VCE limits of the transistor that must be observed for reliable operation, i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 11 is based on TC = 25_C; TJ(pk) is variable depending on power level. Second breakdown pulse

limits are valid for duty cycles to 10% but must be derated when TC 25_C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 11 may be found at any case temperature by using the appropriate curve on Figure 13.

TJ(pk) may be calculated from the data in Figure 10. At high case temperatures, thermal limitations will reduce the

power that can be handled to values less than the limitations imposed by second breakdown.

REVERSE BIAS

For inductive loads, high voltage and high current must be sustained simultaneously during turn±off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these

devices is specified as VCEX(sus) at a given collector current and represents a voltage±current condition that can be sus-

tained during reverse biased turn±off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 12 gives the complete reverse bias safe operating area characteristics. See Table 1 for circuit conditions.

 

100

 

 

 

 

 

FACTORDERATING(%)

 

 

 

FORWARD BIAS

 

80

 

 

SECOND BREAKDOWN

CURRENTBASE(AMP)

 

 

 

DERATING

 

60

 

 

 

 

 

 

 

 

 

 

 

40

THERMAL DERATING

 

 

 

 

 

 

 

 

 

POWER

 

 

 

 

 

,

 

 

 

 

 

I

 

20

 

 

 

 

B2(pk)

 

0

40

80

120

160

200

 

0

 

 

 

TC, CASE TEMPERATURE (°C)

 

 

10

7

IC = 10 A

5

2

SEE TABLE 1 FOR CONDITIONS,

FIGURE 7 FOR WAVESHAPE.

0

0

1

2

5

7

8

VBE(off), REVERSE BASE CURRENT (VOLTS)

Figure 13. Power Derating

Figure 14. Reverse Base Current versus

 

VBE(off) with No External Base Resistance

6

Motorola Bipolar Power Transistor Device Data

MJ10009

PACKAGE DIMENSIONS

 

A

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

NOTES:

 

 

 

 

 

C

 

 

 

 

 

 

1. DIMENSIONING AND TOLERANCING PER ANSI

 

 

 

 

 

 

 

Y14.5M, 1982.

 

 

 

 

 

±T±

SEATING

 

 

2. CONTROLLING DIMENSION: INCH.

 

 

E

 

 

PLANE

 

 

3. ALL RULES AND NOTES ASSOCIATED WITH

 

 

 

 

 

 

 

REFERENCED TO±204AA OUTLINE SHALL APPLY.

 

D 2 PL

K

 

 

 

 

 

 

 

 

 

 

 

 

INCHES

MILLIMETERS

 

 

 

 

 

 

 

 

 

0.13 (0.005) M

T

Q

M

Y

M

 

 

DIM

MIN

MAX

MIN

MAX

 

U

 

 

 

 

 

 

A

1.550 REF

39.37 REF

 

±Y±

 

 

 

 

B

±±±

1.050

±±±

26.67

V

L

 

 

 

 

 

 

 

 

 

 

C

0.250

0.335

6.35

8.51

 

2

 

 

 

 

 

 

D

0.038

0.043

0.97

1.09

 

 

B

 

 

 

 

E

0.055

0.070

1.40

1.77

H

G

 

 

 

 

 

G

0.430 BSC

10.92 BSC

1

 

 

 

 

 

 

H

0.215 BSC

5.46 BSC

 

 

 

 

 

 

 

K

0.440

0.480

11.18

12.19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

0.665 BSC

16.89 BSC

 

±Q±

 

 

 

 

 

 

N

±±±

0.830

±±±

21.08

 

0.13 (0.005) M

T

Y

M

 

 

 

Q

0.151

0.165

3.84

4.19

 

 

 

 

U

1.187 BSC

30.15 BSC

 

 

 

 

 

 

 

 

V

0.131

0.188

3.33

4.77

 

 

 

 

 

 

 

 

STYLE 1:

 

 

 

 

 

 

 

 

 

 

 

 

PIN 1. BASE

 

 

 

 

 

 

 

 

 

 

 

2. EMITTER

 

 

 

 

 

 

 

 

 

 

CASE: COLLECTOR

 

 

CASE 1±07

TO±204AA (TO±3)

ISSUE Z

Motorola Bipolar Power Transistor Device Data

7

MJ10009

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. ªTypicalº parameters can and do vary in different applications. All operating parameters, including ªTypicalsº must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

 

USA / EUROPE: Motorola Literature Distribution;

JAPAN: Nippon Motorola Ltd.; Tatsumi±SPD±JLDC, Toshikatsu Otsuki,

P.O. Box 20912; Phoenix, Arizona 85036. 1±800±441±2447

6F Seibu±Butsuryu±Center, 3±14±2 Tatsumi Koto±Ku, Tokyo 135, Japan. 03±3521±8315

MFAX: RMFAX0@email.sps.mot.com ± TOUCHTONE (602) 244±6609 HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,

INTERNET: http://Design±NET.com

51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852±26629298

MJ10009/D

*MJ10009/D*

Соседние файлы в папке Bipolar