Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

motorola / Bipolar / MJW16206

.PDF
Источник:
Скачиваний:
2
Добавлен:
06.01.2022
Размер:
350.69 Кб
Скачать

MOTOROLA

SEMICONDUCTOR TECHNICAL DATA

Order this document by MJW16206/D

SCANSWITCH

NPN Bipolar Power Deflection Transistors

For High and Very High Resolution CRT Monitors

The MJF16206 and the MJW16206 are state±of±the±art SWITCHMODE bipolar power transistors. They are specifically designed for use in horizontal deflection circuits for high and very high resolution, monochrome and color CRT monitors.

1200 Volt VCES Breakdown Capability

Typical Dynamic Desaturation Specified (New Turn±Off Characteristic)

Maximum Repetitive Emitter±Base Avalanche Energy Specified (Industry First)

High Current Capability: Performance Specified at 6.5 Amps

Continuous Rating Ð 12 Amps Max

Pulsed Rating Ð 15 Amps Max

Isolated MJF16206 is UL Recognized

Fast Switching: 100 ns Inductive Fall Time (Typ)

1000 ns Inductive Storage Time (Typ)

Low Saturation Voltage

0.25Volts (Typ) at 6.5 Amps Collector Current

High Emitter±Base Breakdown Capability For High Voltage Off Drive Circuits Ð

8.0V (Min)

MAXIMUM RATINGS

Rating

 

Symbol

Value

Unit

 

 

 

 

Collector±Emitter Breakdown Voltage

VCES

1200

Vdc

Collector±Emitter Sustaining Voltage

 

VCEO(sus)

500

Vdc

Emitter±Base Voltage

 

VEBO

8.0

Vdc

Isolation Voltage

 

VISOL

Ð

Vrms

(RMS for 1 sec., TA = 25_C,

Figure 19

 

 

Relative Humidity v 30%)

Figure 20

 

Ð

 

 

 

 

 

 

Collector Current Ð Continuous

 

IC

12

Adc

Collector Current Ð Pulsed (1)

 

ICM

15

 

Base Current Ð Continuous

 

IB

5.0

Adc

Base Current Ð Pulsed (1)

 

IBM

10

 

Repetitive Emitter±Base Avalanche Energy

W(BER)

0.2

mjoules

Total Power Dissipation @ TC = 25_C

PD

150

Watts

Total Power Dissipation @ TC = 100_C

 

39

 

Derated above 25_C

 

 

1.49

_

 

 

 

 

W/ C

Operating and Storage Temperature

 

TJ, Tstg

± 55 to +150

_C

THERMAL CHARACTERISTICS

Characteristic

Symbol

Max

Unit

 

 

 

 

Thermal Resistance Ð Junction to Case

RqJC

0.67

_C/W

Lead Temperature for Soldering Purposes 1/8″

TL

260

_C

from the Case for 5 seconds

 

 

 

 

 

 

 

(1) Pulse Test: Pulse Width = 5.0 ms, Duty Cycle v 10%.

MJW16206

POWER TRANSISTORS

12 AMPERES

1200 VOLTS Ð VCES

50 and 150 WATTS

CASE 340F±02

TO±247AE

SCANSWITCH is a trademark of Motorola Inc.

REV 2

Motorola, Inc. 1995

MJW16206

ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted)

Characteristic

Symbol

Min

Typ

Max

Unit

 

 

 

 

 

 

OFF CHARACTERISTICS (1)

 

 

 

 

 

 

 

 

 

 

 

Collector Cutoff Current

ICES

 

 

 

mAdc

(VCE = 1200 Vdc, VBE = 0 V)

 

Ð

Ð

250

 

(VCE = 850 Vdc, VBE = 0 V)

 

Ð

Ð

25

 

Emitter±Base Leakage

IEBO

 

 

 

mAdc

(VEB = 8.0 Vdc, IC = 0)

 

Ð

Ð

25

 

Collector±Emitter Sustaining Voltage (Figure 10)

VCEO(sus)

 

 

 

Vdc

(IC = 10 mAdc, IB = 0)

 

500

Ð

Ð

 

Emitter±Base Breakdown Voltage

V(BR)EBO

 

 

 

Vdc

(IE = 1.0 mA, IC = 0)

 

8.0

11

Ð

 

ON CHARACTERISTICS (1)

 

 

 

 

 

 

 

 

 

 

 

Collector±Emitter Saturation Voltage

VCE(sat)

 

 

 

Vdc

(IC = 3.0 Adc, IB = 400 mAdc)

 

Ð

0.15

1.0

 

(IC = 6.5 Adc, IB = 1.5 Adc)

 

Ð

0.25

1.0

 

Base±Emitter Saturation Voltage

VBE(sat)

 

 

 

Vdc

(IC = 6.5 Adc, IB = 1.5 Adc)

 

Ð

0.9

1.5

 

DC Current Gain

hFE

 

 

 

Ð

(IC = 1.0 Adc, VCE = 5.0 Vdc)

 

Ð

24

Ð

 

(IC = 10 Adc, VCE = 5.0 Vdc)

 

5.0

8.0

13

 

(IC = 12 Adc, VCE = 5.0 Vdc)

 

3.0

6.0

Ð

 

DYNAMIC CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

Dynamic Desaturation Interval (Figure 15)

tds

Ð

250

Ð

ns

(IC = 6.5 Adc, IB = 1.5 Adc, LB = 0.5 mH)

 

 

 

 

 

Emitter±Base Avalanche Turn±off Energy (Figure 15)

EB(off)

Ð

30

Ð

mjoules

(t = 500 ns, RBE = 22 W)

 

 

 

 

 

Output Capacitance

Cob

Ð

180

350

pF

(VCE = 10 Vdc, IE = 0, ftest = 100 kHz)

 

 

 

 

 

Gain Bandwidth Product

fT

Ð

3.0

Ð

MHz

(VCE = 10 Vdc, IC = 0.5 A, ftest = 1.0 MHz)

 

 

 

 

 

Collector±Heatsink Capacitance Ð MJF16206 Isolated Package

Cc±hs

Ð

17

Ð

pF

(Mounted on a 1″ x 2″ x 1/16″ Copper Heatsink,

 

 

 

 

 

VCE = 0, ftest = 100 kHz)

 

 

 

 

 

SWITCHING CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

Inductive Load (Figure 15) (IC = 6.5 A, IB = 1.5 A)

 

 

 

 

ns

Storage

tsv

Ð

1000

2250

 

Fall Time

tfi

Ð

100

250

 

(1) Pulse Test: Pulse Width = 300 ms, Duty Cycle v 2.0%.

2

Motorola Bipolar Power Transistor Device Data

 

100

 

 

 

 

 

 

 

 

 

 

 

70

 

 

 

 

 

 

 

 

 

 

 

50

TJ = 100°C

 

 

 

 

 

 

 

 

GAIN

 

 

 

 

 

 

 

 

 

30

 

 

 

 

 

 

 

 

 

 

20

 

25°C

 

 

 

 

 

 

 

 

CURRENT

 

 

 

 

 

 

 

 

 

10

 

± 55°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

 

 

 

 

 

 

 

 

 

 

, DC

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

FE

3

 

 

 

 

 

 

 

 

 

 

h

VCE = 5 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

1

 

3

5

7

 

 

 

0.2

0.3

0.5

0.7

2

10

20

IC, COLLECTOR CURRENT (AMPS)

Figure 1. Typical DC Current Gain

(VOLTS)

7

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

TJ = 25°C

 

 

 

 

 

 

 

 

 

VOLTAGE

3

 

 

 

 

 

 

8 A

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IC = 2 A

4 A

 

6.5 A

 

 

10 A

 

 

,COLLECTOR±EMITTER

1

 

 

 

 

 

 

 

 

 

0.7

 

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

 

0.3

 

 

 

 

 

 

 

 

 

0.2

 

 

 

 

 

 

 

 

 

0.1

 

 

 

 

 

 

 

 

 

CE

 

 

 

 

 

 

 

 

 

0.07

 

 

 

 

 

 

 

 

 

V

 

0.2

0.3

0.5

0.7

1

 

3

5

 

0.05 0.07

0.1

2

 

 

 

IB, BASE CURRENT (AMPS)

 

 

Figure 3. Typical Collector Saturation Region

 

10K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

ib

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(pF)

2K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CAPACITANCE

700

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cob

 

 

 

 

 

 

 

500

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

300

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

200

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

70

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C,

 

 

TC =

25

°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f = 1

MHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.1

0.2 0.3 0.5

1

2

3

5

7 10

20 30

50

100 200300500

 

1K

VR, REVERSE VOLTAGE (VOLTS)

Figure 5. Typical Capacitance

 

 

 

 

 

 

 

 

 

MJW16206

(VOLTS)

5

 

 

 

 

 

 

 

 

 

 

3

 

TJ = 25°C

 

 

 

 

 

 

2

 

TJ = 100°C

 

 

 

 

 

 

VOLTAGE

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

0.7

 

 

 

 

 

 

 

 

 

 

,COLLECTOR±EMITTER

 

 

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

 

 

0.3

 

IC/IB1 = 10

 

 

 

 

 

 

0.2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

5

 

 

 

0.1

 

 

 

 

 

 

 

 

 

 

0.07

 

 

 

 

 

 

 

 

 

 

CE

 

 

 

 

 

 

 

 

 

 

0.05

 

 

 

 

 

 

 

 

 

 

V

0.3

0.5

0.7

1

2

3

5

7

10

20

 

0.2

 

 

 

 

IC, COLLECTOR CURRENT (AMPS)

 

 

Figure 2. Typical Collector±Emitter

Saturation Voltage

 

10

 

 

 

 

 

 

 

 

 

 

(VOLTS)

7

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

VOLTAGE

 

 

 

 

 

IC/IB1

= 5 to 10

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BASE±EMITTER

1

 

 

 

 

 

 

 

 

 

 

0.7

 

 

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

 

 

0.3

 

 

 

 

 

 

 

TJ = 25°C

 

,

0.2

 

 

 

 

 

 

 

TJ = 100°C

 

BE

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

0.1

0.3

0.5

0.7

1

2

3

5

7

10

20

 

0.2

 

 

 

 

IC, COLLECTOR CURRENT (AMPS)

 

 

Figure 4. Typical Base±Emitter

Saturation Voltage

 

10

 

 

 

 

 

 

 

 

 

 

(MHz)

7

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

FREQUENCY

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

,TRANSITION

 

 

 

 

 

 

 

 

 

 

0.7

 

 

 

 

 

 

 

 

 

 

0.5

f(test) = 1 MHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.3

TC = 25°C

 

 

 

 

 

 

 

 

0.2

VCE = 10 V

 

 

 

 

 

 

 

 

T

 

 

 

 

 

 

 

 

f

 

 

 

 

 

 

 

 

 

 

 

0.1

0.2

 

0.5

 

1

 

3

 

 

 

 

0.1

0.3

0.7

2

5

7

10

IC, COLLECTOR CURRENT (AMPS)

Figure 6. Typical Transition Frequency

Motorola Bipolar Power Transistor Device Data

3

MJW16206

SAFE OPERATING AREA INFORMATION

 

30

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(AMPS)

10

 

 

 

 

MJW16206

 

10 μs

 

(AMPS)

16

 

 

 

 

IC/IB1 5

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dc

 

5 ms

 

 

 

 

 

 

 

TJ 100°C

 

CURRENT

3

 

 

 

 

 

 

 

 

 

CURRENT

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

100

 

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

, COLLECTOR

0.5

 

 

WIREBOND LIMIT

 

 

 

 

II*

 

, COLLECTOR

8

 

 

 

 

 

 

0.3

 

 

 

 

 

 

 

 

 

 

VBE(off) = 5 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.2

 

 

THERMAL LIMIT

 

 

 

 

 

 

 

 

 

 

 

 

 

0.1

 

 

SECONDARY BREAKDOWN

 

 

 

 

4

 

0 V

 

 

 

 

 

 

LIMIT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

0.05

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

2 V

 

I

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.03

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

0.02

2

3

5

10

20

30

50

100

200 300

500

1K

 

200

400

600

800

1K

1.2K

 

1

 

0

VCE, COLLECTOR±EMITTER VOLTAGE (VOLTS)

VCE, COLLECTOR±EMITTER VOLTAGE (VOLTS)

*REGION II Ð EXPANDED FBSOA USING

Figure 8. Maximum Reverse Bias

MUR8100E, ULTRAFAST RECTIFIER (SEE FIGURE 12)

Safe Operating Area

 

Figure 7. Maximum Forward Biased

Safe Operating Area

FORWARD BIAS

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC ± VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 7 is based on TC = 25_C; TJ(pk) is variable depending on power level. Second breakdown pulse

limits are valid for duty cycles to 10% but must be derated when TC 25_C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 7 may be found at any case temperature by using the appropriate curve on Figure 9.

At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

REVERSE BIAS

Inductive loads, in most cases, require the emitter±to± base junction be reversed biased because high voltage and high current must be sustained simultaneously during turn± off. Under these conditions, the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

90

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(%)

80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SECOND

BREAKDOWN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FACTOR

70

 

 

 

 

 

DERATING

 

 

 

 

 

 

 

 

 

 

 

 

 

 

60

 

 

 

 

 

 

 

 

 

 

RATING

 

 

 

 

 

 

 

 

 

 

40

 

 

 

DERATING

 

 

 

 

 

 

 

50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THERMAL

 

 

 

 

 

 

POWER

20

 

 

 

 

 

 

 

 

 

 

 

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

25

50

75

100

125

150

TC, CASE TEMPERATURE (°C)

Figure 9. Power Derating

active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Biased Safe Operating Area and represents the voltage±current condition allowable during reverse biased turn±off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 8 gives the RBSOA characteristics.

4

Motorola Bipolar Power Transistor Device Data

 

 

 

 

 

 

 

 

 

 

 

 

 

MJW16206

 

 

 

 

0.02 μF

+ V 11 V

 

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H.P. 214

 

 

 

 

 

 

 

 

 

 

IC(pk)

 

 

OR EQUIV.

 

 

 

 

2N6191

T1

 

+ V

 

 

 

P.G.

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IC

 

 

 

+

 

0 V

 

 

 

 

 

 

 

10 μF

 

 

 

± V

 

*IC

 

0

 

±

 

RB1

 

 

 

VCE(pk)

 

 

 

 

 

 

 

 

 

 

L

± 35 V

 

 

 

 

A

A

 

 

T.U.T.

MR856

VCE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

μ

 

RB2

 

*IB

 

 

V

 

 

 

 

 

0.02

F

 

50

 

 

 

CC

IB1

 

 

 

 

 

 

 

 

 

Vclamp

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50

 

+

 

±

2N5337

 

 

 

 

 

IB

 

 

 

 

1 μF

 

 

 

 

 

 

 

RBSOA

500

 

 

 

 

V(BR)CEO

 

Lcoil (ICpk)

IB2

 

 

 

 

 

 

L = 200 μH

 

 

 

 

100

L = 10 mH

 

T1 [

VCC

 

RB2 = 0

 

 

 

 

± V

RB2 =

 

 

 

 

 

 

 

 

 

T1 adjusted to obtain IC(pk)

 

V

CC

= 20 Volts

 

 

 

 

 

V

= 20 Volts

 

 

 

 

 

 

 

 

 

CC

 

 

 

 

 

RB1 selected for desired IB1

 

 

 

 

 

*Tektronix P±6042 or Equivalent

 

 

 

 

 

 

 

 

 

 

Note: Adjust ±V to obtain desired VBE(off) at Point A.

Figure 10. RBSOA/V(BR)CEO(sus) Test Circuit

 

 

1

 

 

 

 

 

 

 

0.5

D = 0.5

 

 

 

 

 

RESISTANCE(NORMALIZED)

 

 

 

 

 

r(t), TRANSIENT THERMAL

0.2

0.2

 

 

 

 

 

 

 

 

 

0.1

0.1

 

RθJC(t) = r(t) RθJC

P(pk)

 

 

 

 

0.05

 

 

RθJC = 0.67°C/W MAX

 

 

 

 

D CURVES APPLY FOR POWER

 

 

 

SINGLE PULSE

 

PULSE TRAIN SHOWN

t1

 

 

 

 

 

 

READ TIME AT t1

t

 

 

 

 

 

 

TJ(pk) ± TC = P(pk) RθJC(t)

2

 

 

 

 

 

 

DUTY CYCLE, D = t1/t2

 

 

 

 

 

 

 

 

 

 

0.01

 

 

100

1K

10K

 

 

0.1

1

10

t, TIME (ms)

Figure 11. Thermal Response

 

 

 

VCE (1000 V MAX)

 

 

 

10 μF

MUR8100

+15

 

 

 

 

1 μF

 

100 μF

 

10 mH

 

 

 

 

 

 

100 Ω

MTP8P10

 

 

 

 

 

 

150 Ω

RB1

 

 

 

 

MUR1100

 

 

 

MTP8P10

 

 

 

MPF930

 

 

+10

 

MPF930

MUR105

 

 

 

T.U.T.

50 Ω

 

MUR105

RB2

 

 

 

MTP12N10

 

 

 

 

 

 

500 μF

MJE210

 

 

 

 

1 μF

 

 

 

150 Ω

 

VOff

 

 

 

 

Note: Test Circuit for Ultrafast FBSOA

Note: RB2 = 0 and VOff = ± 5 Volts

Figure 12. Switching Safe Operating Area

Motorola Bipolar Power Transistor Device Data

5

MJW16206

DYNAMIC DESATURATION

DYNAMIC DESATURATION

The SCANSWITCH series of bipolar power transistors are specifically designed to meet the unique requirements of horizontal deflection circuits in computer monitor applications. Historically, deflection transistor design was focused on minimizing collector current fall time. While fall time is a valid figure of merit, a more important indicator of circuit performance as scan rates are increased is a new characteristic, ªdynamicdesaturation.º In order to assure a linear collector current ramp, the output transistor must remain in hard saturation during storage time and exhibit a rapid turn±off transition. A sluggish transition results in serious consequences.

As the saturation voltage of the output transistor increases, the voltage across the yoke drops. Roll off in the collector current ramp results in improper beam deflection and distortion of the image at the right edge of the screen. Design changes have been made in the structure of the SCANSWITCH series of devices which minimize the dynamic desaturation interval. Dynamic desaturation has been defined in terms of the time required for the VCE to rise from 1.0 to 5.0 volts (Figures 13 and 14) and typical performance at optimized drive conditions has been specified. Optimization of device structure results in a linear collector Current ramp, excellent turn±off switching performance, and significantly lower overall power dissipation.

 

tfi

 

(VOLTS)

5

90% IC(pk)

 

 

 

 

 

 

 

 

 

 

 

VCE

VOLTAGE

4

 

10% IC(pk)

 

IC

 

3

 

 

 

 

VCE = 20 V

 

 

EMITTER-

 

0

 

 

 

 

 

 

 

tsv

 

 

COLLECTOR

2

0

 

 

 

 

 

 

 

 

 

 

 

1

0% IB

 

 

 

 

 

 

 

 

0

Figure 13. Deflection Simulator Switching

Waveforms From Circuit in Figure 15

VCE

DYNAMIC DESATURATION TIME

IS MEASURED FROM VCE = 1 V

TO VCE = 5 V

tds

TIME (ns)

Figure 14. Definition of Dynamic

Desaturation Measurement

6

Motorola Bipolar Power Transistor Device Data

EMITTER±BASE TURN±OFF ENERGY

Typical techniques for driving horizontal outputs rely on a pulse transformer to supply forward base current, and a turn±off network that includes a series base inductor to limit the rate of transition from forward to reverse drive. An alternate drive scheme has been used to characterize the SCANSWITCH series of devices (see Figure 15). This circuit produces a ramp of base drive, eliminating the heavy overdrive at the beginning of the collector current ramp and underdrive just prior to turnoff produced by typical drive strategies. This high performance drive has two additional impor-

MJW16206

tant advantages. First, the configuration of T1 allows LB to be placed outside the path of forward base current making it unnecessary to expend energy to reverse current flow as in a series base inductor. Second, there is no base resistor to limit forward base current and hence no power loss associated with setting the value of the forward base current. The process of generating the ramp stores rather than dissipates energy. Tailoring the amount of energy stored in T1 to the

amount of energy, EB(off), that is required to turn±off the output transistor results in essentially lossless operation. [Note:

B+ and the primary inductance of T1 (LP) are chosen such that 1/2 LP Ib2 = EB(off)].

+ 24 V

 

 

 

 

 

 

 

 

 

 

 

 

 

U2

 

 

 

 

 

 

 

 

 

 

 

 

MC7812

 

 

R13

 

R14

C7

Q2

R16

 

 

 

 

VI

 

VO

 

430

 

 

 

 

 

1K

 

150

110 pF

MJ11016

 

 

 

 

 

 

 

 

 

 

+ C1

GND

 

 

 

 

 

(IB)

R1

R5

(IC)

Q5

100 μF

 

 

 

 

 

 

 

1K

1K

 

MJ11016

 

 

 

 

 

 

Q6

+ C3

 

 

 

 

 

 

 

 

 

 

 

2N5401

 

3.9 V

 

 

 

 

 

 

 

 

 

 

10 μF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ C2

 

 

 

 

 

C6

+

 

 

 

 

 

10 μF

 

 

 

 

 

 

R7

R8

 

R9

 

 

 

Q3

 

100 μF

 

 

 

 

 

 

R17

 

 

 

 

 

 

 

 

 

 

 

2.7K

9.1K

470

 

 

 

MTP3055E

 

 

 

LY

 

 

MDC1000A

 

 

 

 

 

 

 

 

 

 

120

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C4

 

 

C5

 

 

 

 

D2

 

 

 

 

0.005

 

 

0.1

R15

 

 

 

SCANSWITCH

 

CY

 

 

 

 

 

 

 

 

 

 

 

 

7

 

6

 

10K

 

 

 

DAMPER

 

 

 

 

OSC

VCC

 

 

 

 

 

DIODE

 

 

 

R3

8 %

 

OUT 1

 

 

 

 

 

 

 

 

V

250

 

 

 

 

 

 

 

 

LB

 

 

CE

 

 

 

 

 

 

 

T1

 

 

 

 

GND

 

U1

 

 

 

 

 

Q4 SCANSWITCH

R6

 

 

 

MC1391P

 

 

 

 

 

 

 

HORIZ OUTPUT

 

2

 

 

 

 

 

 

 

TRANSISTOR

 

 

 

R12

 

 

 

 

 

1K

 

 

 

D1

 

 

R4

 

 

 

 

 

 

470

 

 

 

 

 

 

 

 

 

 

MUR110

 

 

22

 

 

 

 

 

 

 

 

1 W

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T1: FERROXCUBE POT CORE #1811P3C8

 

LB = 0.5 μH

 

 

 

 

 

 

T1: PRIMARY SEC. TURNS RATIO = 13:4

 

CY = 0.01 μF

 

 

 

 

 

T1: GAPPED FOR LP = 30 μH

 

 

LY = 13 μH

 

 

 

 

 

 

Figure 15. High Resolution Deflection Application Simulator

Motorola Bipolar Power Transistor Device Data

7

MJW16206

 

ts and tf

+15

 

 

 

 

 

 

 

 

1

F

150

 

100

 

100 μF

 

 

 

 

μ

 

Ω

 

Ω

 

 

 

 

 

 

 

 

 

MTP8P10

MTP8P10

 

 

 

 

 

 

 

 

 

 

V(off) adjusted

 

 

 

 

MPF930

 

RB1

 

to give specified

 

 

 

 

 

 

 

off drive

+10 V

 

 

 

 

 

 

A

 

 

 

MPF930

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50 Ω

 

 

 

 

MUR105

MTP12N10

VCC

250 V

 

 

 

 

 

 

 

 

 

 

 

 

 

IC

6.5 A

 

500

μF

 

 

 

MJE210

 

IB1

1.3 A

 

 

 

 

 

 

 

 

 

150 Ω

 

1 μF

 

IB2

Per Fig. 17 & 18

Voff

 

 

 

 

 

 

 

RB1

7.7 Ω

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RL

38 Ω

 

 

A

 

 

 

T.U.T.

 

 

 

 

 

 

 

*IC

RL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*IB

 

 

 

 

 

 

 

 

 

 

VCC

Figure 16. Resistive Load Switching

 

10

 

 

 

 

 

 

1000

 

7

 

 

 

 

 

 

700

 

5

 

 

 

 

 

 

500

( μs)

3

 

 

 

 

IB2 = IB1

(ns)

300

t, TIME

2

 

 

 

 

 

t, TIME

200

 

 

 

 

 

 

 

 

1

IC/IB1 = 5

 

 

 

IB2 = 2 (IB1)

 

 

 

TC = 25°C

 

 

 

 

100

 

0.7

 

 

 

 

 

 

70

 

0.5

 

 

 

 

 

 

50

 

1

2

3

5

7

10

20

 

 

 

IC, COLLECTOR CURRENT (AMPS)

 

 

 

 

 

 

 

 

IB2 = IB1

 

IC/IB = 5

 

 

 

 

IB2 = 2 (IB1)

 

TC = 25°C

 

 

 

 

 

1

2

3

5

7

10

20

IC, COLLECTOR CURRENT (AMPS)

Figure 17. Typical Resistive Storage Time

Figure 18. Typical Resistive Fall Time

 

8

Motorola Bipolar Power Transistor Device Data

MJW16206

TEST CONDITIONS FOR ISOLATION TESTS*

MOUNTED

MOUNTED

 

FULLY ISOLATED

FULLY ISOLATED

 

PACKAGE

PACKAGE

0.099º MIN

 

 

LEADS

 

LEADS

HEATSINK

0.110º MIN

Figure 19. Screw or Clip Mounting Position for Isolation Test Number 1

HEATSINK

Figure 20. Screw or Clip Mounting Position for Isolation Test Number 2

* Measurement made between leads and heatsink with all leads shorted together.

MOUNTING INFORMATION**

4±40 SCREW

CLIP

PLAIN WASHER

HEATSINK

COMPRESSION WASHER

NUT

HEATSINK

 

Figure 21. Typical Mounting Techniques*

Laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting technique, a screw torque of 6 to 8 in . lbs is sufficient to provide maximum power dissipation capability. The compression washer helps to maintain a constant pressure on the package over time and during large temperature excursions.

Destructive laboratory tests show that using a hex head 4-40 screw, without washers, and applying a torque in excess of 20 in . lbs will cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability.

Additional tests on slotted 4-40 screws indicate that the screw slot fails between 15 to 20 in . lbs without adversely affecting the package. However, in order to positively ensure the package integrity of the fully isolated device, Motorola does not recommend exceeding 10 in . lbs of mounting torque under any mounting conditions.

** For more information about mounting power semiconductors see Application Note AN1040.

Motorola Bipolar Power Transistor Device Data

9

MJW16206

PACKAGE DIMENSIONS

 

 

 

 

 

 

NOTES:

 

 

 

 

 

 

 

 

 

±T±

1.

DIMENSIONING AND TOLERANCING PER ANSI

 

±Q±

 

 

Y14.5M, 1982.

 

 

 

 

 

 

E

 

 

 

0.25 (0.010) M T

B

M

 

 

2.

CONTROLLING DIMENSION: MILLIMETER.

±B±

 

C

 

 

MILLIMETERS

INCHES

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

DIM

MIN

MAX

MIN

MAX

 

 

 

 

 

 

A

20.40

20.90

0.803

0.823

 

 

 

 

U

 

 

 

 

 

 

L

 

B

15.44

15.95

0.608

0.628

 

 

 

 

 

 

C

4.70

5.21

0.185

0.205

 

 

 

 

 

 

 

 

A

 

 

 

 

 

D

1.09

1.30

0.043

0.051

 

R

 

 

 

 

E

1.50

1.63

0.059

0.064

 

 

 

 

 

 

F

1.80

2.18

0.071

0.086

 

 

1

2

3

 

 

G

5.45 BSC

0.215 BSC

 

 

 

 

H

2.56

2.87

0.101

0.113

 

 

 

 

 

 

 

J

0.48

0.68

0.019

0.027

 

 

 

 

 

±Y±

 

K

15.57

16.08

0.613

0.633

 

K

P

 

 

 

L

7.26

7.50

0.286

0.295

 

 

 

 

 

P

3.10

3.38

0.122

0.133

 

 

 

 

 

 

 

Q

3.50

3.70

0.138

0.145

 

 

 

 

 

 

 

R

3.30

3.80

0.130

0.150

 

 

F

 

 

H

 

U

5.30 BSC

0.209 BSC

 

 

 

V

 

V

3.05

3.40

0.120

0.134

 

 

 

 

J

 

 

 

 

 

 

 

 

D

 

 

 

STYLE 3:

 

 

 

 

 

 

 

 

 

 

 

 

0.25 (0.010) M

Y

Q S

G

 

 

 

PIN 1. BASE

 

 

 

 

 

 

 

2. COLLECTOR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. EMITTER

 

 

 

 

 

 

 

 

 

 

4. COLLECTOR

 

 

CASE 340F±03

TO±247AE

ISSUE E

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. ªTypicalº parameters can and do vary in different applications. All operating parameters, including ªTypicalsº must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

 

USA / EUROPE: Motorola Literature Distribution;

JAPAN: Nippon Motorola Ltd.; Tatsumi±SPD±JLDC, Toshikatsu Otsuki,

P.O. Box 20912; Phoenix, Arizona 85036. 1±800±441±2447

6F Seibu±Butsuryu±Center, 3±14±2 Tatsumi Koto±Ku, Tokyo 135, Japan. 03±3521±8315

MFAX: RMFAX0@email.sps.mot.com ± TOUCHTONE (602) 244±6609 HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,

INTERNET: http://Design±NET.com

51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852±26629298

MJW16206/D

*MJW16206/D*

Соседние файлы в папке Bipolar