

MOTOROLA
SEMICONDUCTOR TECHNICAL DATA
Order this document by BD243B/D
Complementary Silicon Plastic
Power Transistors
. . . designed for use in general purpose amplifier and switching applications.
• Collector ± Emitter Saturation Voltage Ð
VCE(sat) = 1.5 Vdc (Max) @ IC = 6.0 Adc |
|
|
|
|
|
|
||||
• Collector Emitter Sustaining Voltage Ð |
|
|
|
|
|
|
|
|
|
|
VCEO(sus) = 80 Vdc (Min) Ð BD243B, BD244B |
|
|
|
|
||||||
VCEO(sus) = 100 Vdc (Min) Ð BD243C, BD244C |
|
|
|
|
||||||
• High Current Gain Bandwidth Product |
|
|
|
|
|
|
|
|
|
|
fT = 3.0 MHz (Min) @ IC = 500 mAdc |
|
|
|
|
|
|
||||
• Compact TO±220 AB Package |
|
|
|
|
|
|
|
|
|
|
MAXIMUM RATINGS |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BD243B |
|
BD243C |
|
|
|
Rating |
|
Symbol |
|
BD244B |
|
BD244C |
|
Unit |
||
|
|
|
|
|
|
|
|
|
|
|
Collector±Emitter Voltage |
|
|
VCEO |
|
80 |
|
100 |
|
Vdc |
|
Collector±Base Voltage |
|
|
VCB |
|
80 |
|
100 |
|
Vdc |
|
Emitter±Base Voltage |
|
|
VEB |
|
|
|
5.0 |
|
Vdc |
|
Collector Current Ð Continuous |
|
|
IC |
|
|
|
6 |
|
Adc |
|
Peak |
|
|
|
|
|
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Base Current |
|
|
IB |
|
|
|
2.0 |
|
Adc |
|
Total Device Dissipation |
|
|
PD |
|
|
|
|
|
|
Watts |
@ TC = 25_C |
|
|
|
|
|
|
65 |
|
|
|
Derate above 25_C |
|
|
|
|
|
|
0.52 |
_ |
||
|
|
|
|
|
|
|
|
W/ C |
||
Operating and Storage Junction |
|
TJ, Tstg |
|
± 65 to +150 |
|
_C |
||||
Temperature Range |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
THERMAL CHARACTERISTICS |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
Characteristic |
|
Symbol |
|
|
Max |
|
Unit |
|||
|
|
|
|
|
|
|
|
|||
Thermal Resistance, Junction to Case |
|
RθJC |
|
|
1.92 |
|
_C/W |
NPN
BD243B BD243C*
PNP
BD244B BD244C*
*Motorola Preferred Device
6 AMPERE
POWER TRANSISTORS COMPLEMENTARY SILICON
80 ± 100 VOLTS
65 WATTS
CASE 221A±06
TO±220AB
|
80 |
|
|
|
|
|
|
|
|
(WATTS) |
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
DISSIPATION |
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
, POWER |
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D |
|
|
|
|
|
|
|
|
|
P |
|
|
|
|
|
|
|
|
|
|
0 |
20 |
40 |
60 |
80 |
100 |
120 |
140 |
160 |
|
0 |
||||||||
|
|
|
|
TC, CASE TEMPERATURE (°C) |
|
|
Figure 1. Power Derating
Preferred devices are Motorola recommended choices for future use and best overall value.
REV 7
Motorola, Inc. 1995

BD243B |
BD243C |
BD244B |
BD244C |
|
|
|
|
|
|
ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted) |
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
Characteristic |
Symbol |
Min |
Max |
Unit |
|
|
|
|
|
|
|
|
||
|
Collector±Emitter Sustaining Voltage (1) |
|
VCEO(sus) |
|
|
Vdc |
||
|
(IC = 30 mAdc, IB = 0) |
|
BD243B, BD244B |
|
80 |
Ð |
|
|
|
|
|
|
BD243C, BD244C |
|
100 |
Ð |
|
|
|
|
|
|
|
|
|
|
|
Collector Cutoff Current |
|
|
ICEO |
Ð |
0.7 |
mAdc |
|
|
(VCE = 60 Vdc, IB = 0) |
|
BD243B, BD243C, BD244B, BD244C |
|
|
|
|
|
|
Collector Cutoff Current |
|
|
ICES |
|
|
μAdc |
|
|
(VCE = 80 Vdc, VEB = 0) |
BD243B, BD244B |
|
Ð |
400 |
|
||
|
(VCE = 100 Vdc, VEB = 0) |
BD243C, BD244C |
|
Ð |
400 |
|
||
|
Emitter Cutoff Current |
|
|
IEBO |
Ð |
1.0 |
mAdc |
|
|
(VBE = 5.0 Vdc, IC = 0) |
|
|
|
|
|
|
|
|
ON CHARACTERISTICS (1) |
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
DC Current Gain |
|
|
hFE |
|
|
Ð |
|
|
(IC = 0.3 Adc, VCE = 4.0 Vdc) |
|
|
30 |
Ð |
|
||
|
(IC = 3.0 Adc, VCE = 4.0 Vdc) |
|
|
15 |
Ð |
|
||
|
Collector±Emitter Saturation Voltage |
|
VCE(sat) |
Ð |
1.5 |
Vdc |
||
|
(IC = 6.0 Adc, IB = 1.0 Adc) |
|
|
|
|
|
||
|
Base±Emitter On Voltage |
|
|
VBE(on) |
Ð |
2.0 |
Vdc |
|
|
(IC = 6.0 Adc, VCE = 4.0 Vdc) |
|
|
|
|
|
||
|
DYNAMIC CHARACTERISTICS |
|
|
|
|
|
||
|
|
|
|
|
|
|
||
|
Current±Gain Ð Bandwidth Product (2) |
|
fT |
3.0 |
Ð |
MHz |
||
|
(IC = 500 mAdc, VCE = 10 Vdc, ftest = 1.0 MHz) |
|
|
|
|
|||
|
Small±Signal Current Gain |
|
|
hfe |
20 |
Ð |
Ð |
|
|
(IC = 0.5 Adc, VCE = 10 Vdc, f = 1.0 kHz) |
|
|
|
|
(1)Pulse Test: Pulsewidth v 300 μs, Duty Cycle v 2.0%.
(2)fT = hfe •ftest
|
|
VCC |
|
|
± 30 V |
25 μs |
|
RC |
+ 11 V |
|
|
|
SCOPE |
|
|
|
|
0 |
|
RB |
± 9.0 V |
51 |
D1 |
|
||
tr, tf v 10 ns |
|
|
DUTY CYCLE = 1.0% |
|
± 4 V |
|
|
RB AND RC VARIED TO OBTAIN DESIRED CURRENT LEVELS
D1 MUST BE FAST RECOVERY TYPE eg. 1N5825 USED ABOVE IB [ 100 mA MSD6100 USED BELOW IB [ 100 mA
Figure 2. Switching Time Test Circuit
t, TIME ( μs)
2.0
1.0
0.7
0.5
0.3
0.2
0.1
0.07
0.05
0.03
0.02
0.060.1
TJ = 25°C
VCC = 30 V
IC/IB = 10
tr
td @ VBE(off) = 5.0 V
0.2 |
0.4 |
0.6 |
1.0 |
2.0 |
4.0 |
6.0 |
IC, COLLECTOR CURRENT (AMP)
Figure 3. Turn±On Time
2 |
Motorola Bipolar Power Transistor Device Data |

|
|
|
|
|
|
|
|
|
|
|
|
|
|
BD243B |
BD243C |
BD244B |
BD244C |
||||
|
THERMAL RESISTANCE (NORMALIZED) |
1.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.7 |
D = 0.5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
r(t) EFFECTIVE TRANSIENT |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
0.3 |
0.2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
0.2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
0.1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
P(pk) |
|
|
|
|
|
|
|
|
||||
0.1 |
0.05 |
|
|
|
|
|
|
|
|
|
|
|
|
° |
|
|
|||||
0.07 |
0.02 |
|
|
|
|
|
|
|
|
|
|
|
|
RθJC(max) = 1.92 |
C/W |
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
D CURVES APPLY FOR POWER |
|
||||||||
0.05 |
|
|
|
|
|
|
|
|
|
|
t1 |
|
SINGLE |
PULSE TRAIN SHOWN |
|
|
|||||
0.03 |
|
SINGLE PULSE |
|
|
|
|
|
|
|
t2 |
READ TIME AT t1 |
|
|
|
|||||||
0.01 |
|
|
|
|
|
|
|
|
PULSE |
TJ(pk) ± TC = P(pk) RθJC(t) |
|
|
|||||||||
0.02 |
|
|
|
|
|
|
|
|
|
DUTY CYCLE, D = t1/t2 |
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
0.01 |
0.02 0.03 |
0.05 |
0.1 |
0.2 |
0.3 |
0.5 |
1.0 |
2.0 |
3.0 |
5.0 |
10 |
20 |
30 |
50 |
100 |
200 |
300 |
500 |
1000 |
|
|
0.01 |
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
t, TIME OR PULSE WIDTH (ms) |
|
|
|
|
|
|
|
|
Figure 4. Thermal Response
|
10 |
|
|
|
|
|
|
|
5.0 |
|
|
|
|
0.5 ms |
|
(AMP) |
|
|
|
|
|
|
|
3.0 |
|
|
|
|
|
|
|
2.0 |
|
|
|
|
1.0 |
|
|
CURRENT |
|
|
|
|
ms |
|
|
|
TJ = 150°C |
|
|
|
|
||
|
|
|
|
5.0 ms |
|
||
1.0 |
SECOND BREAKDOWN LIMITED |
|
|
||||
|
|
|
|||||
, COLLECTOR |
|
BONDING WIRE LIMITED |
|
|
|
||
0.5 |
THERMAL LIMITATION @ TC = 25°C |
|
|
|
|||
0.3 |
CURVES APPLY BELOW RATED VCEO |
|
|
|
|||
|
|
|
|
|
|
||
0.2 |
|
|
|
|
|
|
|
C |
|
|
BD243B, BD244B |
|
|
|
|
I |
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
0.1 |
|
|
BD243C, BD244C |
|
|
|
|
10 |
20 |
40 |
60 |
80 |
100 |
|
|
5.0 |
||||||
|
|
VCE, COLLECTOR±EMITTER VOLTAGE (VOLTS) |
|
Figure 5. Active Region Safe Operating Area
There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC ± VCE limits of the transistor that must be observed for reliable operation, i.e., the transistor must not be subjected to greater dissipation than the curves indicate.
The data of Figure 5 is based on TJ(pk) = 150_C: TC is variable depending on conditions. Second breakdown pulse
limits are valid for duty cycles to 10% provided TJ(pk) v 150_C, TJ(pk) may be calculated from the data in Figure 4. At high case temperatures, thermal limitations will
reduce the power that can be handled to values less than the limitations imposed by second breakdown.
|
5.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
TJ |
= 25° |
C |
|
|
|
|
|
2.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VCC = 30 V |
|
|
|
|||
|
|
|
|
|
|
|
|
ts |
|
|
|
|
|
|
|
|
IC/IB = 10 |
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
1.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
IB1 = IB2 |
|
|
|
|
||
μs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
( |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
TIMEt, |
0.5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tf |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.07 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.05 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.1 |
0.2 |
0.4 |
0.6 |
1.0 |
2.0 |
|
4.0 |
6.0 |
|||||||||||||
|
0.06 |
|
IC, COLLECTOR CURRENT (AMP)
Figure 6. Turn-Off Time
|
300 |
|
|
|
|
|
200 |
|
(pF) |
|
|
CAPACITANCE |
100 |
|
|
|
|
|
70 |
|
|
50 |
|
|
30 |
|
|
|
|
|
0.5 |
TJ = 25°C
Cib
Cob
1.0 |
2.0 |
3.0 |
5.0 |
10 |
20 |
30 |
50 |
|
VR, REVERSE VOLTAGE (VOLTS) |
|
|
|
Figure 7. Capacitance
Motorola Bipolar Power Transistor Device Data |
3 |

BD243B BD243C BD244B BD244C
500
300 VCE = 2.0 V
200 TJ = 150°C
GAIN |
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
CURRENT |
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
25°C |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
DC, |
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
± 55°C |
|
|
|
|
|
|
|
|
|
|
FE |
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
h |
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
0.1 |
0.2 |
0.3 |
0.4 |
0.6 |
1.0 |
2.0 |
4.0 |
6.0 |
||
|
0.06 |
IC, COLLECTOR CURRENT (AMP)
Figure 8. DC Current Gain
VCE, COLLECTOR±EMITTER VOLTAGE (VOLTS)
2.0
TJ = 25°C
1.6
IC = 1.0 A |
2.5 A |
5.0 A |
1.2
0.8
0.4
0
10 |
20 |
30 |
50 |
100 |
200 |
300 |
500 |
1000 |
|
|
|
IB, BASE CURRENT (mA) |
|
|
|
Figure 9. Collector Saturation Region
V, VOLTAGE (VOLTS)
2.0
TJ = 25°C
1.6
VBE(sat) @ IC/IB = 10
1.2
VBE @ VCE = 4.0 V
0.8
0.4VCE(sat) @ IC/IB = 10
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.6 |
1.0 |
2.0 |
3.0 |
4.0 |
6.0 |
0.06 |
IC, COLLECTOR CURRENT (AMPS)
Figure 10. ªOnº Voltages
θV, TEMPERATURE COEFFICIENTS (mV/°C)
+ 2.5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*APPLIES |
FOR IC/I |
B ≤ |
5.0 |
|
|
|
|
|
|
|
|
|
|
||
+ 2.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
+ 1.5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+ 1.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+ 25 |
°C to + |
150°C |
|
|
|
|
|
||
+ 0.5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*θ |
VC FOR |
VCE(sat) |
|
|
|
|
|
|
|
|
|
|
|
|
||||
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
± 55 |
°C to + |
25°C |
|
|
|
|
|
||
± 0.5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+ |
25°C to |
+ 150° |
C |
|
|
|
|
|
|||
± 1.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
± 1.5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
θ |
VB FOR |
VBE |
|
|
|
|
|
|
± 55°C to + 25°C |
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
± 2.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
± 2.5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.1 |
0.2 |
0.3 |
0.5 |
1.0 |
2.0 |
3.0 |
0.4 |
0.6 |
|||||||||
0.06 |
IC, COLLECTOR CURRENT (AMP)
Figure 11. Temperature Coefficients
|
103 |
|
|
|
|
|
|
|
(OHMS) |
10M |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
A)(CURRENTCOLLECTOR,μ |
± 2 |
VCE = 30 V |
|
|
|
|
|
RESISTANCEBASE±EMITTER |
1.0k |
|
|
|
|
|
VCE = 30 V |
|
|
|
102 |
|
|
° |
|
|
|
|
|
1.0M |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
IC = 10 x ICES |
|
|
|
|||
|
|
|
TJ = 150 C |
|
|
|
|
|
|
|
|
|
|
|
|||
|
101 |
|
|
|
100°C |
|
|
|
|
|
|
|
|
|
IC = 2 x ICES |
|
|
|
|
|
|
|
|
|
|
|
100k |
|
|
|
|
|
|||
|
|
|
|
|
25°C |
|
|
|
|
|
|
|
|
|
|||
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
k |
|
|
IC ≈ ICES |
|
|
|
|
|
10±1 |
|
|
|
|
|
|
|
|
10 |
|
|
|
|
|
|
|
|
IC = ICES |
|
|
|
|
|
EXTERNAL, |
|
|
|
|
|
|
|
|
||
I |
10± 3 |
REVERSE |
|
|
FORWARD |
|
|
0.1k |
|
|
|
|
|
|
|
||
C 10 |
|
|
|
|
|
|
(TYPICAL ICES VALUES |
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
OBTAINED FROM FIGURE 12) |
|
|
|
|
||
|
± 0.3 ± 0.2 |
± 0.1 |
0 |
+ 0.1 + 0.2 + 0.3 |
+ 0.4 + 0.5 |
+ 0.6 |
+ 0.7 |
BE |
20 |
40 |
60 |
80 |
100 |
120 |
140 |
160 |
|
|
|
|
VBE, BASE-EMITTER VOLTAGE (VOLTS) |
|
|
R |
|
|
TJ, JUNCTION TEMPERATURE (°C) |
|
|
||||||
|
|
|
|
|
|
|
|
|
|
Figure 12. Collector Cut-Off Region |
Figure 13. Effects of Base±Emitter Resistance |
4 |
Motorola Bipolar Power Transistor Device Data |

BD243B BD243C BD244B BD244C
PACKAGE DIMENSIONS
|
|
|
|
±T± |
|
B |
|
F |
C |
|
|
|
T |
S |
4 |
|
|
|
|
Q |
|
|
A |
|
1 |
2 |
3 |
U |
|
H |
|
|
|
|
Z |
|
|
K |
|
|
|
|
|
|
L |
|
|
|
R |
V |
|
|
|
J |
G |
|
|
|
|
|
|
|
D |
|
|
N |
|
|
|
SEATING PLANE
NOTES:
1.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2.CONTROLLING DIMENSION: INCH.
3.DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.
|
INCHES |
MILLIMETERS |
||
DIM |
MIN |
MAX |
MIN |
MAX |
A |
0.570 |
0.620 |
14.48 |
15.75 |
B |
0.380 |
0.405 |
9.66 |
10.28 |
C |
0.160 |
0.190 |
4.07 |
4.82 |
D |
0.025 |
0.035 |
0.64 |
0.88 |
F |
0.142 |
0.147 |
3.61 |
3.73 |
G |
0.095 |
0.105 |
2.42 |
2.66 |
H |
0.110 |
0.155 |
2.80 |
3.93 |
J |
0.018 |
0.025 |
0.46 |
0.64 |
K |
0.500 |
0.562 |
12.70 |
14.27 |
L |
0.045 |
0.060 |
1.15 |
1.52 |
N |
0.190 |
0.210 |
4.83 |
5.33 |
Q |
0.100 |
0.120 |
2.54 |
3.04 |
R |
0.080 |
0.110 |
2.04 |
2.79 |
S |
0.045 |
0.055 |
1.15 |
1.39 |
T |
0.235 |
0.255 |
5.97 |
6.47 |
U |
0.000 |
0.050 |
0.00 |
1.27 |
V |
0.045 |
±±± |
1.15 |
±±± |
Z |
±±± |
0.080 |
±±± |
2.04 |
STYLE 1:
PIN 1. BASE
2.COLLECTOR
3.EMITTER
4.COLLECTOR
CASE 221A±06
TO±220AB
ISSUE Y
Motorola Bipolar Power Transistor Device Data |
5 |

BD243B BD243C BD244B BD244C
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. ªTypicalº parameters can and do vary in different applications. All operating parameters, including ªTypicalsº must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
How to reach us: |
|
USA / EUROPE: Motorola Literature Distribution; |
JAPAN: Nippon Motorola Ltd.; Tatsumi±SPD±JLDC, Toshikatsu Otsuki, |
P.O. Box 20912; Phoenix, Arizona 85036. 1±800±441±2447 |
6F Seibu±Butsuryu±Center, 3±14±2 Tatsumi Koto±Ku, Tokyo 135, Japan. 03±3521±8315 |
MFAX: RMFAX0@email.sps.mot.com ± TOUCHTONE (602) 244±6609 HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, |
|
INTERNET: http://Design±NET.com |
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852±26629298 |
◊ BD243B/D
*BD243B/D*