Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

motorola / Bipolar / MJW16212

.PDF
Источник:
Скачиваний:
2
Добавлен:
06.01.2022
Размер:
298.02 Кб
Скачать

MOTOROLA

SEMICONDUCTOR TECHNICAL DATA

Order this document by MJW16212/D

SCANSWITCH

NPN Bipolar Power Deflection Transistor

For High and Very High Resolution Monitors

The MJW16212 is a state±of±the±art SWITCHMODE bipolar power transistor. It is specifically designed for use in horizontal deflection circuits for 20 mm diameter neck, high and very high resolution, full page, monochrome monitors.

1500 Volt Collector±Emitter Breakdown Capability

Typical Dynamic Desaturation Specified (New Turn±Off Characteristic)

Application Specific State±of±the±Art Die Design

Fast Switching:

200 ns Inductive Fall Time (Typ)

2000 ns Inductive Storage Time (Typ)

Low Saturation Voltage:

0.15Volts at 5.5 Amps Collector Current and 2.5 A Base Drive

Low Collector±Emitter Leakage Current Ð 250 μA Max at 1500 Volts Ð V CES

High Emitter±Base Breakdown Capability For High Voltage Off Drive Circuits Ð

8.0Volts (Min)

MAXIMUM RATINGS

Rating

 

Symbol

Value

Unit

 

 

 

 

Collector±Emitter Breakdown Voltage

VCES

1500

Vdc

Collector±Emitter Sustaining Voltage

VCEO(sus)

650

Vdc

Emitter±Base Voltage

 

VEBO

8.0

Vdc

RMS Isolation Voltage (2)

 

VISOL

 

V

(for 1 sec, TA = 25_C,

Per Fig. 14

 

Ð

 

Rel. Humidity < 30%)

Per Fig. 15

 

Ð

 

 

 

 

 

 

Collector Current Ð Continuous

 

IC

10

Adc

Collector Current Ð Pulsed (1)

 

ICM

15

 

Base Current Ð Continuous

 

IB

5.0

Adc

Base Current Ð Pulsed (1)

 

IBM

10

 

Maximum Repetitive Emitter±Base

W (BER)

0.2

mJ

Avalanche Energy

 

 

 

 

 

 

 

 

Total Power Dissipation @ TC = 25_C

PD

150

Watts

Total Power Dissipation @ TC = 100_C

 

39

 

Derated above TC = 25_C

 

 

1.49

W/_C

Operating and Storage Temperature Range

TJ, Tstg

± 55 to 125

_C

THERMAL CHARACTERISTICS

 

 

 

 

 

 

 

 

Characteristic

 

Symbol

Max

Unit

 

 

 

 

Thermal Resistance Ð Junction to Case

RqJC

0.67

_C/W

Lead Temperature for Soldering Purposes

TL

275

_C

1/8″ from the case for 5 seconds

 

 

 

 

 

 

 

 

(1)Pulse Test: Pulse Width = 5.0 ms, Duty Cycle v 10%.

(2)Proper strike and creepage distance must be provided.

Preferred devices are Motorola recommended choices for future use and best overall value.

SCANSWITCH and SWITCHMODE are trademarks of Motorola Inc.

MJF18002 (See MJE18002)

MJF18004 (See MJE18004)

MJF18006 (See MJE18006)

MJF18008 (See MJE18008)

MJW16212*

*Motorola Preferred Device

POWER TRANSISTOR

10 AMPERES

1500 VOLTS ± VCES

50 AND 150 WATTS

CASE 340F±03

TO±247AE

REV 1

Motorola, Inc. 1995

MJW16212

ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted)

Characteristic

Symbol

Min

Typ

Max

Unit

 

 

 

 

 

 

OFF CHARACTERISTICS (2)

 

 

 

 

 

 

 

 

 

 

 

Collector Cutoff Current (VCE = 1500 V, VBE = 0 V)

ICES

Ð

Ð

250

mAdc

Collector Cutoff Current (VCE = 1200 V, VBE = 0 V)

 

Ð

Ð

25

 

Emitter±Base Leakage (VEB = 8.0 Vdc, IC = 0)

IEBO

Ð

Ð

25

mAdc

Emitter±Base Breakdown Voltage (IE = 1.0 mA, IC = 0)

V(BR)EBO

8.0

11

Ð

Vdc

Collector±Emitter Sustaining Voltage (Table 1) (IC = 10 mAdc, IB = 0)

VCEO(sus)

650

Ð

Ð

Vdc

ON CHARACTERISTICS (2)

 

 

 

 

 

 

 

 

 

 

 

Collector±Emitter Saturation Voltage (IC = 5.5 Adc, IB = 2.2 Adc)

VCE(sat)

Ð

0.15

1.0

Vdc

Collector±Emitter Saturation Voltage (IC = 3.0 Adc, IB = 400 mAdc)

 

Ð

0.14

1.0

 

Base±Emitter Saturation Voltage (IC = 5.5 Adc, IB = 2.2 Adc)

VBE(sat)

Ð

0.9

1.5

Vdc

DC Current Gain (IC = 1.0 A, VCE = 5.0 Vdc)

hFE

Ð

24

Ð

Ð

DC Current Gain (IC = 10 A, VCE = 5.0 Vdc)

 

4.0

6.0

10

 

DYNAMIC CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

Dynamic Desaturation Interval (IC = 5.5 A, IB1 = 2.2 A, LB = 1.5 mH)

tds

Ð

350

Ð

ns

Output Capacitance

Cob

Ð

180

350

pF

(VCE = 10 Vdc, IE = 0, ftest = 100 kHz)

 

 

 

 

 

Gain Bandwidth Product

fT

Ð

2.75

Ð

MHz

(VCE = 10 Vdc, IC = 0.5 A, ftest = 1.0 MHz)

 

 

 

 

 

Emitter±Base Turn±Off Energy

EB(off)

Ð

35

Ð

mJ

(EB(avalanche) = 500 ns, RBE = 22 W)

 

 

 

 

 

Collector±Heatsink Capacitance Ð MJF16212 Isolated Package

Cc±hs

Ð

5.0

Ð

pF

(Mounted on a 1″ x 2″ x 1/16″ Copper Heatsink, VCE = 0, ftest = 100 kHz)

 

 

 

 

 

SWITCHING CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

Inductive Load (IC = 5.5 A, IB = 2.2 A), High Resolution Deflection

 

 

 

 

ns

Simulator Circuit Table 2

 

 

 

 

 

Storage

tsv

Ð

2000

4000

 

Fall Time

 

tfi

Ð

200

350

 

 

 

(2) Pulse Test: Pulse Width = 300 ms, Duty Cycle v 2.0%.

SAFE OPERATING AREA

(A)

100

 

 

 

 

 

 

 

 

 

 

50

 

 

 

 

 

 

 

 

 

 

CURRENT

20

 

 

 

 

 

 

 

 

10 ms

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

COLLECTOR±EMITTER

 

 

 

 

 

 

 

 

 

100

2

 

 

 

 

 

 

 

 

 

 

 

 

 

MJH16212

 

 

5 ms

ns

1

 

 

 

 

 

 

 

 

 

II

0.5

 

 

 

 

 

 

 

DC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.2

 

 

BONDING WIRE LIMIT

 

 

 

 

0.1

 

 

 

 

 

 

 

 

THERMAL LIMIT

 

 

 

 

0.05

 

 

SECOND BREAKDOWN

 

 

 

,

 

TJ = 25°C

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

I

0.02

 

 

 

 

 

 

 

 

0.01

2

3

5

7

10

20 30

50

70100

200 300

500700 1K

 

1

 

 

 

 

VCE, COLLECTOR±EMITTER VOLTAGE (V)

 

Figure 1. Maximum Forward Bias

Safe Operating Area

 

18

 

 

 

 

 

(A)

 

 

 

 

 

IC/IB = 5

CURRENT

 

 

 

 

 

14

 

 

 

 

TJ ≤ 100°C

 

 

 

 

 

 

, COLLECTOR

10

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

I

 

 

 

 

 

 

 

2

 

 

 

 

 

 

0

300

600

900

1200

1500

VCE, COLLECTOR±EMITTER VOLTAGE (V)

Figure 2. Maximum Reverse Bias

Safe Operating Area

3±2

Motorola Bipolar Power Transistor Device Data

MJW16212

SAFE OPERATING AREA (continued)

FORWARD BIAS

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC ± VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 1 is based on TC = 25_C; TJ(pk) is variable depending on power level. Second breakdown pulse

limits are valid for duty cycles to 10% but must be derated when TC 25_C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 1 may be found at any case temperature by using the appropriate curve on Figure 3.

At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

REVERSE BIAS

For inductive loads, high voltage and high current must be sustained simultaneously during turn±off, in most cases, with the base±to±emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping,

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SECOND

BREAKDOWN

 

 

 

FACTOR

0.8

 

 

 

 

 

 

 

DERATING

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DERATING

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DERATING

 

 

 

 

 

 

 

0.4

 

 

 

 

 

 

 

 

 

 

 

POWER

0.2

 

 

 

 

THERMAL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25

45

65

85

105

125

TC, CASE TEMPERATURE (°C)

Figure 3. Power Derating

RC snubbing, load line shaping, etc.

The safe level for these devices is specified as Reverse Biased Safe Operating Area and represents the voltage± current condition allowable during reverse biased turnoff. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 2 gives the RBSOA characteristics.

Lcoil (ICpk)

T1 [ VCC

T1 adjusted to obtain IC(pk)

V(BR)CEO

L = 10 mH

RB2 =

VCC = 20 Volts

*Tektronix *P±6042 or *Equivalent

 

Table 1. RBSOA/V(BR)CEO(SUS) Test Circuit

 

 

0.02

μF

+ V 11 V

 

 

100

 

 

 

 

 

H.P. 214

 

 

 

 

OR EQUIV.

 

 

2N6191

 

P.G.

20

 

 

 

 

 

 

 

+

 

 

0

 

10 μF

 

RB1

 

 

±

 

± 35 V

 

 

 

A

 

 

0.02 μF

RB2

 

 

 

 

50

+

±

2N5337

 

 

1 μF

 

 

 

500

 

 

 

 

 

 

100

 

 

 

 

± V

T1

+ V

 

 

IC(pk)

0 V

± V

*IC

 

IC

 

 

VCE(pk)

 

 

L

 

A

T.U.T.

 

VCE

 

MR856

 

 

50

*IB

 

IB1

Vclamp

VCC

 

 

 

 

IB

 

RBSOA

 

 

 

L = 200 μH

 

IB2

 

RB2 = 0

 

 

 

VCC = 20 Volts

 

 

RB1 selected for desired IB1

Note: Adjust ±V to obtain desired VBE(off) at Point A.

Motorola Bipolar Power Transistor Device Data

3±3

MJW16212

VCE, COLLECTOR±EMITTER VOLTAGE (V)

10

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

7

IC = 2

4

5.5

8

 

10 A

 

 

 

 

7

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

(V)

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VOLTAGE

IC/IB = 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TJ = 100°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.7

 

 

 

 

 

 

 

 

 

 

BASE±EMITTER

 

= 25°C

 

 

 

 

 

 

 

 

0.07

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IC/IB = 10

 

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.3

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

0.2

TJ = 25°C

 

 

 

 

 

 

 

 

 

 

0.7

 

 

 

 

 

 

 

 

 

 

0.1

 

 

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.05

 

 

 

 

 

 

 

 

 

 

,

0.3

TJ = 100°C

 

 

 

 

 

 

 

 

 

0.03

 

 

 

 

 

 

 

 

 

 

BE

 

 

= 25°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

0.2

 

 

 

 

 

 

 

 

 

0.02

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.01

.02.03 .05

0.1

0.2 0.3 0.5

1

2

3

5 7

10

 

0.1

0.2

0.3

0.5

0.7

1

2

3

5

7

10

.01

 

0.1

 

 

 

 

IB, BASE CURRENT (A)

 

 

 

 

IC, COLLECTOR CURRENT (A)

 

 

 

Figure 4. Typical Collector±Emitter

Figure 5. Typical Emitter±Base

Saturation Region

Saturation Voltage

(V)

10

 

 

 

 

 

 

 

 

 

 

7

 

 

 

 

 

 

 

 

 

 

VOLTAGE

5

 

 

 

 

 

IC/IB = 10

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

TJ = 100°C

 

 

 

2

 

 

 

 

 

 

 

 

 

 

COLLECTOR±EMITTER

 

 

 

 

 

 

= 25°C

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

0.7

 

 

 

IC/IB = 5

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

 

 

 

TJ = 100°C

 

 

 

 

 

0.3

 

 

 

 

= 25°C

 

 

 

 

 

0.2

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

CE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

0.1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.1

0.2

0.3

0.5

0.7

1

2

3

5

7

10

 

5

 

 

 

 

 

 

FREQUENCY

4

 

 

 

VCE = 10 V

 

 

 

 

 

 

 

 

 

 

 

 

f(test) = 1 MHz

 

 

3

 

 

 

TC = 25°C

 

 

f τ , TRANSITION

2

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

0

1

2

3

4

5

6

IC, COLLECTOR CURRENT (A)

Figure 6. Typical Collector±Emitter

Saturation Voltage

 

10000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2000

 

 

 

Cib

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(pF)

1000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

500

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CAPACITANCEC,

 

 

test = 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

f

MHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

200

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

3

5

7

10

20

30

50 70 100

VR, REVERSE VOLTAGE (V)

IC, COLLECTOR CURRENT (A)

Figure 7. Typical Transition Frequency

Cob

200300 500 1000

Figure 8. Typical Capacitance

3±4

Motorola Bipolar Power Transistor Device Data

MJW16212

DYNAMIC DESATURATIION

The SCANSWITCH series of bipolar power transistors are specifically designed to meet the unique requirements of horizontal deflection circuits in computer monitor applications. Historically, deflection transistor design was focused on minimizing collector current fall time. While fall time is a valid figure of merit, a more important indicator of circuit performance as scan rates are increased is a new characteristic, ªdynamicdesaturation.º In order to assure a linear collector current ramp, the output transistor must remain in hard saturation during storage time and exhibit a rapid turn±off transition. A sluggish transition results in serious consequences. As the saturation voltage of the output transistor increases,

the voltage across the yoke drops. Roll off in the collector current ramp results in improper beam deflection and distortion of the image at the right edge of the screen. Design changes have been made in the structure of the SCANSWITCH series of devices which minimize the dynamic desaturation interval. Dynamic desaturation has been defined in terms of the time required for the VCE to rise from 1.0 to 5.0 volts (Figures 9 and 10) and typical performance at optimized drive conditions has been specified. Optimization of device structure results in a linear collector current ramp, excellent turn±off switching performance, and significantly lower overall power dissipation.

+ 24 V

Table 2. High Resolution Deflection Application Simulator

 

 

 

 

 

U2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MC7812

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

G

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

I

N

O

 

 

 

 

 

 

 

 

 

(IC)

 

 

 

C1

 

D

 

 

 

+

Q2

 

 

 

 

R5

Q5

 

 

100 μF

 

 

 

 

 

 

 

 

 

 

 

 

 

MJ11016

 

 

 

 

 

 

 

C2

MJ11016

 

 

 

 

1 k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10 μF

 

(IB)

 

R1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 k

 

 

 

 

 

 

 

R7

 

R8

 

R9

 

+

C3

 

6.2 V

C6

+

 

 

 

 

 

 

 

 

 

100

μ

 

 

 

 

2.7 k

 

9.1 k

 

470

 

R10

10 μF

 

 

 

F

 

 

 

 

 

 

 

 

 

 

 

 

 

LY

 

 

 

 

 

47

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C4

 

 

C5

 

 

100 V

 

 

 

 

 

 

 

 

 

 

 

 

 

0.1

 

Q3

 

 

 

 

 

 

 

 

 

 

 

 

0.005

 

6

R11

 

 

 

 

D2

 

CY

 

 

 

 

 

7

 

 

470

MJE

 

 

 

 

MUR460

 

 

 

 

 

 

 

OSC

 

VCC

 

 

 

 

 

 

 

 

 

 

 

(DC)

 

 

1 W

15031

 

 

 

 

 

 

 

 

 

R2

R3

 

8 %

 

OUT 1

 

 

 

 

 

LB

 

 

 

V

 

R510

250

 

 

 

 

 

U1

 

 

T1

 

 

 

CE

 

 

 

 

GND

 

 

 

 

 

 

 

Q4

 

SYNC

 

R6

MC1391P

 

 

 

 

 

 

 

 

 

Q1

 

2

 

 

 

 

 

 

 

 

DUT

 

 

1 k

 

 

 

R12

D1

 

 

 

R4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

470

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MUR110

 

 

 

22

 

 

 

 

 

BS170

 

 

 

 

 

 

1 W

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T1: Ferroxcube Pot Core #1811 P3C8

LB = 1.5 μH

 

 

 

 

 

 

 

 

 

Primary/Sec. Turns Ratio = 18:6

CY = 0.01 μF

 

 

 

 

 

 

 

 

 

Gapped for LP = 30 μH

 

 

LY = 13 μH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(V)

5

 

 

 

 

 

 

 

(A)CURRENT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IB1 = 1.3 A

 

VOLTAGE

4

 

DYNAMIC DESATURATION TIME

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IS MEASURED FROM VCE = 1 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COLLECTOR±EMITTER

 

 

TO VCE = 5 V

 

 

 

 

 

I

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

BASE,

 

 

IB2 = 4.9 A

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

tds

 

 

 

 

 

 

 

 

 

CE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

2

4

 

6

8

10

 

 

TIME (2 μs/DIV)

 

 

 

 

 

 

 

 

TIME (ns)

 

 

Figure 9. Deflection Simulator Circuit Base

Figure 10. Definition of Dynamic

Drive Waveform

Desaturation Measurement

Motorola Bipolar Power Transistor Device Data

3±5

MJW16212

 

 

 

 

 

 

 

s)

15

 

 

 

 

 

 

 

1500

 

 

 

 

 

 

 

 

 

STORAGE TIME (μ

10

 

 

 

 

 

 

RESISTIVE FALL TIME ( μs)

1000

7

 

 

 

 

 

 

700

5

 

 

 

 

IB2 = IB1

500

 

 

 

 

 

 

3

 

 

 

 

 

 

300

 

 

 

 

 

 

 

 

RESISTIVE,

2

βf = 5

 

 

I

= 2 (I

)

,

200

 

 

f

 

 

 

B2

B1

 

t

 

s

 

TJ = 25°C

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

3

5

7

10

 

15

100

 

1

 

 

 

 

 

IC, COLLECTOR CURRENT (A)

 

 

 

 

 

 

IB2 = IB1

 

 

 

 

 

 

IB2 = 2 (IB1)

 

 

 

βf = 5

 

 

 

 

 

 

TJ = 25°C

 

 

 

 

1

2

3

5

7

10

15

IC, COLLECTOR CURRENT (A)

Figure 11. Typical Resistive Storage Time

 

 

 

 

Figure 12. Typical Resistive Fall Time

 

Table 3. Resistive Load Switching

ts and tf

+15

 

 

 

 

 

 

1 F

150

 

100

 

100 μF

 

 

μ

 

Ω

 

Ω

 

 

 

 

 

 

 

MTP8P10

MTP8P10

V(off) adjusted

 

 

 

MPF930

 

RB1

to give specified

 

 

 

 

 

off drive

+10 V

 

 

A

 

 

MPF930

 

 

 

 

 

RB2

 

 

 

 

 

 

 

 

50 Ω

 

MUR105

 

VCC

250 V

 

 

MTP12N10

 

RL

28 Ω

500

μF

MJE210

 

IC

5.5 A

 

 

 

150 Ω

1 μF

 

IB1

1.1 A

Voff

 

 

 

IB2

Per Spec

 

 

 

 

 

 

 

RB1

3.3 Ω

 

A

T.U.T.

 

 

 

*IC

RL

RB2

 

 

 

Per Spec

 

 

*IB

 

 

 

 

 

VCC

 

 

 

1

 

 

 

 

 

 

 

0.5

D = 0.5

 

 

 

 

 

RESISTANCE (NORMALIZED)

 

 

 

 

 

r(t), TRANSIENT THERMAL

0.2

0.2

 

 

 

 

 

 

 

 

 

0.1

0.1

 

RθJC(t) = r(t) RθJC

P(pk)

 

 

 

RθJC = 0.7°C/W MAX

 

 

0.05

 

 

D CURVES APPLY FOR POWER

 

 

 

 

PULSE TRAIN SHOWN

t1

 

 

 

 

READ TIME AT t1

 

 

 

 

t

 

 

SINGLE PULSE

 

TJ(pk) ± TC = P(pk) RθJC(t)

2

 

 

 

DUTY CYCLE, D = t1/t2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.01

 

 

100

1000

10000

 

 

0.1

1

10

t, TIME (ms)

Figure 13. Thermal Response

3±6

Motorola Bipolar Power Transistor Device Data

EMITTER±BASE TURN±OFF ENERGY, EB(off)

Emitter±base turn±off energy is a new specification included on the SCANSWITCH data sheets. Typical techniques for driving horizontal outputs rely on a pulse transformer to supply forward base current, and a turnoff network that includes a series base inductor to limit the rate of transition from forward to reverse. An alternate drive scheme has been used to characterize the SCANSWITCH series of devices (see Figure 2). This circuit ramps the base drive to eliminate the heavy overdrive at the beginning of the collector current ramp and underdrive just prior to turn±off observed in typical drive topologies. This high performance

MJW16212

drive has two additional important advantages. First, the configuration of T1 allows Lb to be placed outside the path of forward base current making it unnecessary to expend energy to reverse the current flow as in a series based inductor. Second, there is no base resistor to limit forward base current and hence no power loss associated with setting the value of the forward base current. The ramp generating process stores rather than dissipates energy. Tailoring the amount of

energy stored in T1 to the amount of energy, EB(off), that is required to turn the output transistor off results in essentially

lossless operation. [Note: B+ and the primary inductance of T1 (LP) are chosen such that 1/2LPlb2 = EB(off).]

TEST CONDITIONS FOR ISOLATION TESTS* (MJF16212 ONLY)

MOUNTED

FULLY ISOLATED

PACKAGE

LEADS

HEATSINK

0.110º MIN

Figure 14. Screw or Clip Mounting Position for Isolation Test Number 1

MOUNTED

 

FULLY ISOLATED

 

PACKAGE

0.099º MIN

 

 

LEADS

HEATSINK

Figure 15. Screw or Clip Mounting Position for Isolation Test Number 2

* Measurement made between leads and heatsink with all leads shorted together

MOUNTING INFORMATION** (MJF16212 ONLY)

4±40 SCREW

CLIP

PLAIN WASHER

HEATSINK

COMPRESSION WASHER

NUT

HEATSINK

 

Figure 16a. Screw±Mounted Figure 16b. Clip±Mounted

Figure 16. Typical Mounting Techniques*

Laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting technique, a screw torque of 6 to 8 in . lbs is sufficient to provide maximum power dissipation capability. The compression washer helps to maintain a constant pressure on the package over time and during large temperature excursions.

Destructive laboratory tests show that using a hex head 4-40 screw, without washers, and applying a torque in excess of 20 in . lbs will cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability.

Additional tests on slotted 4-40 screws indicate that the screw slot fails between 15 to 20 in . lbs without adversely affecting the package. However, in order to positively ensure the package integrity of the fully isolated device, Motorola does not recommend exceeding 10 in . lbs of mounting torque under any mounting conditions.

** For more information about mounting power semiconductors see Application Note AN1040.

Motorola Bipolar Power Transistor Device Data

3±7

MJW16212

PACKAGE DIMENSIONS

 

 

 

 

 

 

NOTES:

 

 

 

 

 

 

 

 

 

±T±

1.

DIMENSIONING AND TOLERANCING PER ANSI

 

±Q±

 

 

Y14.5M, 1982.

 

 

 

 

 

 

E

 

 

 

0.25 (0.010) M T

B

M

 

 

2.

CONTROLLING DIMENSION: MILLIMETER.

±B±

 

C

 

 

MILLIMETERS

INCHES

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

DIM

MIN

MAX

MIN

MAX

 

 

 

 

 

 

A

20.40

20.90

0.803

0.823

 

 

 

 

U

 

 

 

 

 

 

L

 

B

15.44

15.95

0.608

0.628

 

 

 

 

 

 

C

4.70

5.21

0.185

0.205

 

 

 

 

 

 

 

 

A

 

 

 

 

 

D

1.09

1.30

0.043

0.051

 

R

 

 

 

 

E

1.50

1.63

0.059

0.064

 

 

 

 

 

 

F

1.80

2.18

0.071

0.086

 

 

1

2

3

 

 

G

5.45 BSC

0.215 BSC

 

 

 

 

H

2.56

2.87

0.101

0.113

 

 

 

 

 

 

 

J

0.48

0.68

0.019

0.027

 

 

 

 

 

±Y±

 

K

15.57

16.08

0.613

0.633

 

K

P

 

 

 

L

7.26

7.50

0.286

0.295

 

 

 

 

 

P

3.10

3.38

0.122

0.133

 

 

 

 

 

 

 

Q

3.50

3.70

0.138

0.145

 

 

 

 

 

 

 

R

3.30

3.80

0.130

0.150

 

 

F

 

 

H

 

U

5.30 BSC

0.209 BSC

 

 

 

V

 

V

3.05

3.40

0.120

0.134

 

 

 

 

J

 

STYLE 3:

 

 

 

 

 

D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G

 

 

 

PIN 1. BASE

 

 

 

 

 

 

 

 

 

 

 

 

0.25 (0.010) M

Y

Q S

 

 

 

 

2. COLLECTOR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. EMITTER

 

 

 

 

 

 

 

 

 

 

4. COLLECTOR

 

 

CASE 340F±03

TO±247AE

ISSUE E

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. ªTypicalº parameters can and do vary in different applications. All operating parameters, including ªTypicalsº must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

 

USA / EUROPE: Motorola Literature Distribution;

JAPAN: Nippon Motorola Ltd.; Tatsumi±SPD±JLDC, Toshikatsu Otsuki,

P.O. Box 20912; Phoenix, Arizona 85036. 1±800±441±2447

6F Seibu±Butsuryu±Center, 3±14±2 Tatsumi Koto±Ku, Tokyo 135, Japan. 03±3521±8315

MFAX: RMFAX0@email.sps.mot.com ± TOUCHTONE (602) 244±6609 HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,

INTERNET: http://Design±NET.com

51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852±26629298

MJW16212/D

*MJW16212/D*

Соседние файлы в папке Bipolar