

MOTOROLA
SEMICONDUCTOR TECHNICAL DATA
Order this document by MKP3V110/D
Sidac High Voltage
Bilateral Triggers
. . . designed for direct interface with the ac power line. Upon reaching the breakover voltage in each direction, the device switches from a blocking state to a low voltage on-state. Conduction will continue like an SCR until the main terminal current drops below the holding current. The plastic axial lead package provides high pulse current capability at low cost. Glass passivation insures reliable operation. Applications are:
•High Pressure Sodium Vapor Lighting
•Strobes and Flashers
•Ignitors
•High Voltage Regulators
•Pulse Generators
MKP3V110* MKP3V120* MKP3V130*
*Motorola preferred devices
SIDACs
1 AMPERE RMS
100 thru 135 VOLTS
MT1 |
MT2 |
|
|
|
|
CASE 267-03 |
|
|
|
|
|
|
SURMETIC 50 |
|
|
|
|
|
|
PLASTIC AXIAL |
|
|
MAXIMUM RATINGS (TJ = 25°C unless otherwise noted) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Rating |
Symbol |
|
Min |
Max |
|
Unit |
|
|
|
|
|
|
|
Repetitive Breakover Voltage |
V(BO) |
|
|
|
|
Volts |
MKP3V110 |
|
100 |
120 |
|
|
|
MKP3V120 |
|
110 |
130 |
|
|
|
MKP3V130 |
|
120 |
140 |
|
|
|
|
|
|
|
|
|
|
Off-State Repetitive Voltage |
VDRM |
Ð |
± 90 |
|
Volts |
|
On-State RMS Current |
IT(RMS) |
Ð |
1 |
|
Amp |
|
On-State Surge Current (Non-repetitive) |
ITSM |
Ð |
20 |
|
Amps |
|
(60 Hz One Cycle Sine Wave, Peak Value) |
|
|
|
|
|
|
|
|
|
|
|
|
|
Operating Junction Temperature Range |
TJ |
±40 |
+125 |
|
°C |
|
Storage Temperature Range |
Tstg |
±40 |
+150 |
|
°C |
|
Lead Solder Temperature |
Ð |
Ð |
+230 |
|
°C |
|
(Lead Length ≥ 1/16″ from Case, 10 s Max) |
|
|
|
|
|
|
|
|
|
|
|
|
|
THERMAL CHARACTERISTICS |
|
|
|
|
|
|
|
|
|
|
|
|
|
Characteristic |
Symbol |
|
Min |
Max |
|
Unit |
|
|
|
|
|
|
|
Thermal Resistance, Junction to Lead |
RqJL |
Ð |
15 |
|
°C/W |
|
(Lead Length = 3/8″ ) |
|
|
|
|
|
|
Preferred devices are Motorola recommended choices for future use and best overall value.
Motorola, Inc. 1995

MKP3V110 MKP3V120 MKP3V130
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted; both directions)
Characteristic |
Symbol |
Min |
Typ |
Max |
Unit |
|
|
|
|
|
|
Breakover Current |
I(BO) |
Ð |
Ð |
200 |
μA |
Repetitive Peak Off-State Current |
IDRM |
Ð |
Ð |
10 |
μA |
(60 Hz Sine Wave, VD = 90 V) |
|
|
|
|
|
Forward ªOnº Voltage |
VTM |
Ð |
1.1 |
1.5 |
Volts |
(ITM = 1 A Peak) |
|
|
|
|
|
Dynamic Holding Current |
IH |
Ð |
Ð |
100 |
mA |
Switching Resistance |
RS |
0.1 |
Ð |
Ð |
kΩ |
Maximum Rate of Change of On-State Current |
di/dt |
Ð |
50 |
Ð |
A/μs |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CURRENT DERATING |
|
|
|
|
|
|
|
|
|
|
||||
°C) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
( |
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ALLOWABLE CASE TEMPERATURE |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
|
|
|
|
|
|
|
|
|
MAXIMUMALLOWABLE AMBIENT |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
α |
|
|
TEMPERATURE (°C) |
140 |
|
|
|
|
|
|
|
α |
|
|
||
110 |
|
|
|
|
|
|
α = Conduction Angle |
|
120 |
|
|
|
|
|
|
α = Conduction Angle |
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
Tj Rated = 125°C |
|
100 |
|
|
|
|
|
|
Tj Rated = 125°C |
|
|||||||
100 |
|
|
|
|
|
|
|
|
|
|
80 |
|
|
|
α = 180° |
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
60 |
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
90 |
|
|
|
|
|
|
|
|
|
|
40 |
|
|
|
|
|
|
|
|
|
|
|||
MAXIMUM |
|
|
|
|
|
|
|
|
|
|
A |
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
α = 180° |
|
T |
|
20 |
|
|
|
|
|
|
|
|
|
|
||
80 |
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
C |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
0 |
0.2 |
0.4 |
0.6 |
0.8 |
1.0 |
1.2 |
1.4 |
1.6 |
1.8 |
2.0 |
|
|
0 |
0.2 |
0.4 |
0.6 |
0.8 |
1.0 |
1.2 |
1.4 |
1.6 |
1.8 |
2.0 |
|
T |
|
|
||||||||||||||||||||||
|
|
|
IT(AV), AVERAGE ON-STATE CURRENT (AMPS) |
|
|
|
|
|
|
IT(AV), AVERAGE ON-STATE CURRENT (AMPS) |
|
|
Figure 1. Maximum Case Temperature |
Figure 2. Maximum Ambient Temperature |
I T , INSTANTANEOUS ON-STATE CURRENT (AMPS)
1.0 |
|
|
|
|
|
(WATTS) |
1.25 |
|
|
|
α = 180° |
|
0.8 |
|
|
25°C |
125°C |
|
DISSIPATION |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|||
0.6 |
|
|
|
|
|
|
1.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
α |
|
|
|
|
|
|
|
|
|
|
POWER |
|
|
|
|
|
|
0.4 |
|
|
|
|
|
0.75 |
α = Conduction Angle |
|
|
|
||
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
||
0.3 |
|
|
|
|
|
AVERAGE |
|
Tj Rated = 125°C |
|
|
|
|
|
|
|
|
|
|
0.50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.2 |
|
|
|
|
|
MAXIMUM, |
|
|
|
|
|
|
0.1 |
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
0.25 |
|
|
|
|
|
0.8 |
0.9 |
1.0 |
1.1 |
1.2 |
1.3 |
AV |
0 |
0.2 |
0.4 |
0.6 |
0.8 |
1.0 |
|
VT, INSTANTANEOUS ON-STATE VOLTAGE (VOLTS) |
|
P |
|
IT(AV), AVERAGE ON-STATE CURRENT (AMPS) |
|
||||||
|
|
|
|
|
Figure 3. Typical Forward Voltage |
Figure 4. Power Dissipation |
2 |
Motorola Thyristor Device Data |

r(t), TRANSIENT THERMAL |
RESISTANCE (NORMALIZED) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MKP3V110 MKP3V120 |
MKP3V130 |
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
THERMAL CHARACTERISTICS |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
1.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.5 |
|
ZθJL(t) = RθJL •r(t) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LEAD |
|
LENGTH |
= 1/4″ |
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
TJL = Ppk RθJL[r(t)] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
0.3 |
|
|
|
|
|
|
|
|
tp |
|
|
|
TIME |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
|
where: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
0.2 |
|
TJL = the increase in junction temperature above the lead |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The |
|
temperature |
of the lead |
should be |
measured using a |
|
|
||||||||||||||||||||||||||
|
|
temperature |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
r(t) = normalized value of transient thermal resistance at time, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
thermocouple |
placed |
on the lead |
as close |
as possible to the |
|
|
|||||||||||||||||||||||||
0.1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tie |
point. The thermal |
mass connected to |
the tie point is nor- |
|
|
||||||||||||||||||||||||||||
|
t from this figure. For example, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
|
|
r(tp) = normalized value of |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mally large enough |
so that it will not significantly respond to |
|
|
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
heat surges generated in the diode as a result of pulsed op- |
|
|
||||||||||||||||||||
0.05 |
|
transient resistance at time tp. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eration once steady-state conditions are achieved. Using the |
|
|
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
0.03 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
measured value of TL, the junction temperature may be de- |
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
termined by: |
|
|
|
|
|
|
|
|
||||
0.02 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
TJ = TL + DTJL |
|
|
|
|
|||
0.01 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.2 |
0.5 |
|
|
|
1.0 |
|
2.0 |
|
|
|
5.0 |
|
10 |
20 |
50 |
|
|
100 |
200 |
|
500 |
|
1.0 k |
|
2.0 k |
5.0 k |
10 k |
20 k |
||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t, TIME (ms) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Figure 5. Thermal Response
TYPICAL CHARACTERISTICS
I(BO), BREAKOVER CURRENT (μA)
100 |
|
|
|
|
|
|
|
|
|
|
90 |
|
|
|
|
|
|
|
|
|
|
80 |
|
|
|
|
|
|
|
|
|
|
70 |
|
|
|
|
|
|
|
|
|
|
60 |
|
|
|
|
|
|
|
|
|
|
50 |
|
|
|
|
|
|
|
|
|
|
40 |
|
|
|
|
|
|
|
|
|
|
30 |
|
|
|
|
|
|
|
|
|
|
20 |
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
±60 |
±40 |
±20 |
0 |
20 |
40 |
60 |
80 |
100 |
120 |
140 |
|
|
|
TJ, JUNCTION TEMPERATURE (°C) |
|
|
|
Figure 6. Breakover Current
I H , HOLDING CURRENT (mA)
250 |
|
|
|
|
|
|
|
|
|
|
225 |
|
|
|
|
|
|
|
|
|
|
200 |
|
|
|
|
|
|
|
|
|
|
175 |
|
|
|
|
|
|
|
|
|
|
150 |
|
|
|
|
|
|
|
|
|
|
125 |
|
|
|
|
|
|
|
|
|
|
100 |
|
|
|
|
|
|
|
|
|
|
75 |
|
|
|
|
|
|
|
|
|
|
50 |
|
|
|
|
|
|
|
|
|
|
25 |
|
|
|
|
|
|
|
|
|
|
0 |
|
|
0 |
|
|
|
|
|
|
|
±60 |
±40 |
±20 |
20 |
40 |
60 |
80 |
100 |
120 |
140 |
|
|
|
|
TJ, JUNCTION TEMPERATURE (°C) |
|
|
|
Figure 7. Holding Current
ITM |
VTM |
Slope = RS |
|
|
|
IH |
|
|
|
|
IS |
|
IDRM |
VS |
|
I(BO) |
|
|
|
|
|
VDRM |
V(BO) |
|
(V(BO) *VS ) |
|
|
RS + (IS *I(BO) ) |
|
Figure 8. V-1 Characteristics |
Motorola Thyristor Device Data |
3 |

MKP3V110 MKP3V120 MKP3V130
PACKAGE DIMENSIONS
B
D
1
K |
STYLE 1: |
|
|
|
|
PIN 1. |
CATHODE |
|
|
2. |
ANODE |
|
|
|
|
NOTES:
1.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2.CONTROLLING DIMENSION: INCH.
|
INCHES |
MILLIMETERS |
||
DIM |
MIN |
MAX |
MIN |
MAX |
A |
0.370 |
0.380 |
9.40 |
9.65 |
B |
0.190 |
0.210 |
4.83 |
5.33 |
D |
0.048 |
0.052 |
1.22 |
1.32 |
K |
1.000 |
±±± |
25.40 |
±±± |
A
K
2
CASE 267±03
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. ªTypicalº parameters can and do vary in different applications. All operating parameters, including ªTypicalsº must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
Literature Distribution Centers:
USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England. JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.
ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.
◊ |
MKP3V110/D |
*MKP3V110/D*