Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

motorola / mos / mmdf4c03hdrev1

.pdf
Источник:
Скачиваний:
2
Добавлен:
06.01.2022
Размер:
282.32 Кб
Скачать

MOTOROLA

SEMICONDUCTOR TECHNICAL DATA

Order this document by MMDF4C03HD/D

Advance Information

Medium Power Surface Mount Products

Complementary TMOS

Field Effect Transistors

MiniMOS devices are an advanced series of power MOSFETs which utilize Motorola's High Cell Density HDTMOS process.

These miniature surface mount MOSFETs feature ultra low RDS(on) and true logic level performance. They are capable of withstanding

high energy in the avalanche and commutation modes and the drain±to±source diode has a very low reverse recovery time. MiniMOS devices are designed for use in low voltage, high speed switching applications where power efficiency is important. Typical applications are dc±dc converters, and power management in portable and battery powered products such as computers, printers, cellular and cordless phones. They can also be used for low voltage motor controls in mass storage products such as disk drives and tape drives.

Ultra Low RDS(on) Provides Higher Efficiency and Extends Battery Life

Logic Level Gate Drive Ð Can Be Driven by Logic ICs

Miniature SO±8 Surface Mount Package Ð Saves Board Space

Ideal for Synchronous Rectification

Diode Exhibits High Speed, With Soft Recovery

IDSS Specified at Elevated Temperature

Mounting Information for SO±8 Package Provided

P±G

N±G

MMDF4C03HD

Motorola Preferred Device

 

P±S

D

N±S

COMPLEMENTARY

DUAL TMOS POWER FET

30 VOLTS

N±CH RDS(on) = 50 mW P±CH RDS(on) = 85 mW

CASE 751±05, Style 11

SO±8

N±Source

 

 

1

8

 

 

Drain

 

 

 

 

 

 

 

2

7

 

 

 

N±Gate

 

 

 

 

Drain

P±Source

 

 

3

6

 

 

Drain

 

 

 

 

P±Gate

 

 

 

4

5

 

 

Drain

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Top View

MAXIMUM RATINGS (TJ = 25°C unless otherwise noted)

Rating

Symbol

Polarity

Value

Unit

 

 

 

 

 

Drain±to±Source Voltage

VDSS

Ð

30

Vdc

Gate±to±Source Voltage

VGS

Ð

± 20

Vdc

Drain Current Ð Continuous

ID

N±Channel

5.5

Adc

 

 

 

P±Channel

4.4

 

 

 

 

 

 

Drain Current Ð Pulsed

IDM

N±Channel

25

Apk

 

 

 

P±Channel

20

 

 

 

 

 

 

Operating and Storage Temperature Range

TJ, Tstg

Ð

±55 to +150

°C

Total Power Dissipation @ T = 25°C (1)

P

D

 

2.5

Watts

A

 

 

 

 

Single Pulse Drain±to±Source Avalanche Energy Ð Starting T J = 25°C

EAS

N±Channel

325

mJ

(VDD = 30 Vdc, VGS = 5.0 Vdc, IL = 9.0 Apk, L = 10 mH, RG = 25 W)

 

 

 

(VDD = 30 Vdc, VGS = 5.0 Vdc, IL = 9.0 Apk, L = 10 mH, RG = 25 W)

 

 

P±Channel

450

 

Thermal Resistance Ð Junction±to±Ambient (1)

RqJA

 

50

°C/W

Maximum Lead Temperature for Soldering Purposes, 1/8″ from Case for 10 sec.

TL

 

260

°C

DEVICE MARKING

 

 

 

 

 

 

 

 

 

 

 

D4C03

 

 

 

 

 

(1) Mounted on G10/FR4 glass epoxy board using minimum recommended footprint.

 

 

 

 

 

ORDERING INFORMATION

Device

Reel Size

Tape Width

Quantity

 

 

 

 

MMDF4C03HDR2

13″

12 mm embossed tape

2500

This document contains information on a new product. Specifications and information herein are subject to change without notice.

HDTMOS and MiniMOS are trademarks of Motorola, Inc. TMOS is a registered trademark of Motorola, Inc. Thermal Clad is a trademark of the Bergquist Company.

Preferred devices are Motorola recommended choices for future use and best overall value.

REV 1

Motorola TMOS Power MOSFET Transistor Device Data

1

Motorola, Inc. 1997

 

MMDF4C03HD

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Characteristic

Symbol

Polarity

Min

Typ

Max

Unit

 

 

 

 

 

 

 

 

 

OFF CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Drain±to±Source Breakdown Voltage

V(BR)DSS

 

 

 

 

Vdc

(VGS = 0 Vdc, ID = 0.25 mAdc)

 

 

 

Ð

30

Ð

Ð

 

Zero Gate Voltage Drain Current

 

 

IDSS

(N)

Ð

Ð

1.0

μAdc

(VDS = 30 Vdc, VGS = 0 Vdc)

 

 

 

(P)

Ð

Ð

1.0

 

Gate±Body Leakage Current (VGS = ± 20 Vdc, VDS = 0)

IGSS

Ð

Ð

Ð

±100

nAdc

ON CHARACTERISTICS(1)

 

 

 

 

 

 

 

 

Gate Threshold Voltage (VDS = VGS, ID = 250 μAdc)

VGS(th)

Ð

1.0

Ð

Ð

Vdc

Threshold Temperature Coefficient (Negative)

 

Ð

Ð

Ð

Ð

mV/°C

 

 

 

 

 

 

 

 

 

Drain±to±Source On±Resistance

(VGS = 10 Vdc, ID = 3.5 Adc)

RDS(on)1

(N)

Ð

0.037

0.05

Ohms

 

(VGS = 10 Vdc, ID = 3.5 Adc)

 

(P)

Ð

0.075

0.085

 

Static Drain±to±Source On±Resistance

RDS(on)2

 

 

 

 

Ohms

 

(VGS = 4.5 Vdc, ID = 2.5 Adc)

 

(N)

Ð

0.55

0.08

 

 

(VGS = 4.5 Vdc, ID = 2.0 Adc)

 

(P)

Ð

0.125

0.16

 

Forward Transconductance

 

 

gFS

(N)

Ð

9.0

Ð

mhos

 

(VDS = 15 Vdc, ID = 3.5 Adc)

 

(P)

Ð

6.0

Ð

 

DYNAMIC CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input Capacitance

 

 

Ciss

(N)

Ð

430

600

pF

 

 

 

 

(P)

Ð

425

600

 

 

 

(VDS = 24 Vdc,

 

 

 

 

 

 

Output Capacitance

 

Coss

(N)

Ð

217

300

 

 

VGS = 0 Vdc,

 

 

 

 

(P)

Ð

209

300

 

 

 

f = 1.0 MHz)

 

 

 

 

 

 

 

 

 

 

Transfer Capacitance

 

 

Crss

(N)

Ð

67.5

135

 

 

 

 

 

(P)

Ð

57.2

80

 

 

 

 

 

 

 

 

 

SWITCHING CHARACTERISTICS(2)

 

 

 

 

 

 

Turn±On Delay Time

 

 

td(on)

(N)

Ð

8.2

16.4

ns

 

 

 

 

(P)

Ð

11.7

23.4

 

 

 

 

 

 

 

 

 

 

Rise Time

 

(VDD = 15 Vdc,

tr

(N)

Ð

8.48

16.9

 

 

 

ID = 1.0 Adc,

 

(P)

Ð

15.8

31.6

 

Turn±Off Delay Time

 

VGS = 10 Vdc,

td(off)

(N)

Ð

89.6

179

 

 

 

RG = 6.0 Ω)

 

(P)

Ð

167.3

334.6

 

Fall Time

 

 

tf

(N)

Ð

61.1

122

 

 

 

 

 

(P)

Ð

102.6

205.2

 

 

 

 

 

 

 

 

 

 

Total Gate Charge

 

 

QT

(N)

Ð

15.7

31.4

nC

(See Figure 8)

 

 

 

(P)

Ð

14.8

29.6

 

 

 

 

 

 

 

 

 

 

 

 

(VDS = 10 Vdc,

Q1

(N)

Ð

2.0

Ð

 

 

 

 

(P)

Ð

1.7

Ð

 

 

 

ID = 3.5 Adc,

 

 

 

 

 

 

 

 

Q2

(N)

Ð

4.6

Ð

 

 

 

VGS = 10 Vdc)

 

 

 

 

 

(P)

Ð

4.7

Ð

 

 

 

 

 

 

 

 

 

 

 

 

 

Q3

(N)

Ð

3.9

Ð

 

 

 

 

 

(P)

Ð

3.4

Ð

 

 

 

 

 

 

 

 

 

SOURCE±DRAIN DIODE CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Forward On±Voltage(2)

 

(IS = 1.7 Adc, VGS = 0 Vdc)

VSD

(N)

Ð

0.77

1.2

Vdc

 

 

(IS = ±1.7 Adc, VGS = 0 Vdc)

 

(P)

Ð

0.90

1.2

 

Reverse Recovery Time

 

(N)

trr

(N)

Ð

54.5

Ð

ns

 

 

(ID = 3.5 Adc,

 

(P)

Ð

77.4

Ð

 

 

 

 

 

 

 

 

 

 

 

VGS = 0 Vdc

ta

(N)

Ð

14.8

Ð

 

 

 

dIS/dt = 100 A/μs)

 

(P)

Ð

19.9

Ð

 

 

 

(P)

tb

(N)

Ð

39.7

Ð

 

 

 

(ID = 3.5 Adc,

 

(P)

Ð

57.5

Ð

 

 

 

 

 

 

 

 

 

Reverse Recovery Stored Charge

 

VGS = 0 Vdc

QRR

(N)

Ð

0.048

Ð

μC

 

 

dIS/dt = 100 A/μs)

 

(P)

Ð

0.088

Ð

 

(1)Pulse Test: Pulse Width 300 μs, Duty Cycle 2%.

(2)Switching characteristics are independent of operating junction temperature.

2

Motorola TMOS Power MOSFET Transistor Device Data

MMDF4C03HD

TYPICAL ELECTRICAL CHARACTERISTICS

 

 

 

 

N±Channel

 

 

 

 

 

 

12

10 V

 

 

3.9 V

 

 

TJ = 25°C

 

 

 

 

 

3.7 V

 

 

 

6.0 V

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

(AMPS)

4.5 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.0

4.3 V

 

 

 

 

 

3.5 V

 

 

 

CURRENT

 

4.1 V

 

 

 

 

 

 

 

 

 

6.0

 

 

 

 

 

 

 

3.3 V

 

 

 

 

 

 

 

 

 

 

 

 

 

, DRAIN

4.0

 

 

 

 

 

 

 

3.1 V

 

 

 

 

 

 

 

 

 

 

2.9 V

 

D

 

 

 

 

 

 

 

 

 

 

I

2.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VGS

= 2.5 V

 

2.7 V

 

 

 

 

 

 

 

 

 

 

 

0

0.2

0.4

0.6

0.8

1.0

 

1.4

1.6

1.8

 

 

0

1.2

2.0

 

 

 

VDS, DRAIN±TO±SOURCE VOLTAGE (VOLTS)

 

 

Figure 1. On±Region Characteristics

 

12

 

 

 

 

 

 

 

(AMPS)

10

VDS

10 V

 

 

 

 

 

8.0

 

 

 

 

 

 

 

CURRENT

6.0

 

 

 

 

 

 

 

 

 

 

100°C

25°C

 

 

 

, DRAIN

 

 

 

 

 

 

 

 

 

 

 

 

 

4.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D

 

 

 

 

TJ = ±55°C

 

 

 

I

2.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

2.0

2.5

3.0

3.5

4.0

 

 

 

1.5

4.5

5.0

 

 

VGS, GATE±TO±SOURCE VOLTAGE (VOLTS)

 

Figure 2. Transfer Characteristics

(OHMS)

0.30

 

 

 

 

 

 

 

 

 

 

TJ = 25°C

 

 

 

 

 

RESISTANCE

0.25

 

 

 

 

 

 

 

ID

= 6 A

 

 

 

 

 

 

 

 

 

 

 

 

0.20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

, DRAIN±TO±SOURCE

0.15

 

 

 

 

 

 

 

 

0.10

 

 

 

 

 

 

 

 

0.05

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DS(on)

0

 

 

 

 

 

 

 

 

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10

R

 

 

 

 

 

P±Channel

 

 

 

 

 

 

6.0

VGS = 10 V

 

 

 

 

TJ = 25°C

 

 

 

 

 

 

 

 

 

 

 

5.0

6.0 V

 

 

 

4.1 V

 

 

 

 

 

(AMPS)

4.5 V

 

 

 

 

 

 

 

 

 

 

 

 

 

3.9 V

 

 

 

 

 

4.3 V

 

 

 

 

 

 

 

 

4.0

 

 

 

 

 

 

 

 

 

CURRENT

 

 

 

 

 

 

 

3.7 V

 

 

3.0

 

 

 

 

 

 

 

3.5 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,DRAIN

2.0

 

 

 

 

 

 

 

3.3 V

 

 

 

 

 

 

 

 

 

 

3.1 V

 

D

 

 

 

 

 

 

 

 

 

I

1.0

 

 

 

 

 

 

 

 

2.9 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.7 V

 

 

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

 

0

 

 

 

VDS, DRAIN±TO±SOURCE VOLTAGE (VOLTS)

 

 

Figure 1. On±Region Characteristics

 

6.0

 

 

 

 

 

 

 

(AMPS)

5.0

VDS

10 V

 

 

100°C

 

 

4.0

 

 

 

 

 

 

 

CURRENT

3.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

, DRAIN

2.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D

 

 

25°C

 

 

 

 

 

I

1.0

 

 

 

 

 

 

 

 

 

TJ = ±55°C

 

 

 

 

 

 

 

 

 

 

0

2.0

2.5

3.0

3.5

4.0

 

 

 

1.5

4.5

5.0

 

 

VGS, GATE±TO±SOURCE VOLTAGE (VOLTS)

 

Figure 2. Transfer Characteristics

(OHMS)

0.8

 

 

 

 

 

 

 

 

0.7

 

TJ = 25°C

 

 

 

 

 

RESISTANCE

 

 

 

 

 

 

0.6

 

ID = 3 A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

, DRAIN±TO±SOURCE

0.4

 

 

 

 

 

 

 

 

0.3

 

 

 

 

 

 

 

 

0.2

 

 

 

 

 

 

 

 

0.1

 

 

 

 

 

 

 

 

DS(on)

0

 

 

 

 

 

 

9.0

 

2.0

3.0

4.0

5.0

6.0

7.0

8.0

10

R

VGS, GATE±TO±SOURCE VOLTAGE (VOLTS)

VGS, GATE±TO±SOURCE VOLTAGE (VOLTS)

Figure 3. On±Resistance versus

Figure 3. On±Resistance versus

Gate±To±Source Voltage

Gate±To±Source Voltage

Motorola TMOS Power MOSFET Transistor Device Data

3

MMDF4C03HD

TYPICAL ELECTRICAL CHARACTERISTICS

 

 

 

 

N±Channel

 

 

 

 

(OHMS)

0.050

 

 

 

 

 

 

 

 

 

TJ = 25°C

 

 

 

 

 

 

 

RESISTANCE

0.045

 

 

 

VGS = 4.5 V

 

 

 

 

 

 

 

 

 

 

 

 

0.040

 

 

 

 

 

 

 

 

, DRAIN±TO±SOURCE

0.035

 

 

 

 

 

 

 

 

0.030

 

 

 

10 V

 

 

 

 

 

 

 

 

 

 

 

 

 

DS(on)

0.025

 

 

 

 

 

 

 

 

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

R

 

 

 

 

ID, DRAIN CURRENT (AMPS)

 

 

 

 

 

 

 

P±Channel

 

 

 

 

(OHMS)

0.18

 

 

 

 

 

 

 

 

 

0.16

TJ = 25°C

 

 

 

 

 

 

 

 

RESISTANCE

 

 

 

 

 

 

 

 

 

0.14

 

 

 

VGS = 4.5 V

 

 

 

 

 

 

 

 

 

 

 

 

 

0.12

 

 

 

 

 

 

 

 

 

DRAIN±TO±SOURCE

 

 

 

 

 

 

 

 

 

0.10

 

 

 

 

 

 

 

 

 

0.08

 

 

 

 

10 V

 

 

 

 

 

 

 

 

 

 

 

 

 

0.06

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

DS(on)

0.04

 

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

1.0

1.5

R

 

 

 

 

ID, DRAIN CURRENT (AMPS)

 

 

 

Figure 4. On±Resistance versus Drain Current

Figure 4. On±Resistance versus Drain Current

and Gate Voltage

and Gate Voltage

(NORMALIZED)

1.8

 

 

 

 

 

 

 

 

1.6

VGS = 10 V

 

 

 

 

 

 

1.4

ID = 3 A

 

 

 

 

 

 

 

RESISTANCE

 

 

 

 

 

 

 

 

1.2

 

 

 

 

 

 

 

 

1.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,DRAIN±TO±SOURCE

0.8

 

 

 

 

 

 

 

 

0.6

 

 

 

 

 

 

 

 

0.4

 

 

 

 

 

 

 

 

0.2

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

DS(on)

 

0

 

50

75

100

125

150

±50

±25

25

 

 

TJ, JUNCTION TEMPERATURE (°C)

 

 

R

 

 

 

 

Figure 5. On±Resistance Variation with

 

 

 

Temperature

 

 

 

 

1000

 

 

 

 

 

 

 

 

VGS = 0 V

 

 

 

 

 

 

100

 

 

TJ = 125°C

 

 

 

(nA)

 

 

 

 

 

 

 

 

 

 

 

 

 

, LEAKAGE

10

 

 

100°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DSS

 

 

 

 

 

 

 

I

1.0

 

 

25°C

 

 

 

 

 

 

 

 

 

 

0.1

 

 

 

 

 

 

 

0

5.0

10

15

20

25

30

 

 

VDS, DRAIN±TO±SOURCE VOLTAGE (VOLTS)

 

Figure 6. Drain±To±Source Leakage

Current versus Voltage

(NORMALIZED)

1.6

 

 

 

 

 

 

 

 

1.4

VGS = 10 V

 

 

 

 

 

 

1.2

ID = 1.5 A

 

 

 

 

 

 

 

RESISTANCE

 

 

 

 

 

 

 

 

1.0

 

 

 

 

 

 

 

 

0.8

 

 

 

 

 

 

 

 

,DRAIN±TO±SOURCE

 

 

 

 

 

 

 

 

0.6

 

 

 

 

 

 

 

 

0.4

 

 

 

 

 

 

 

 

0.2

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

DS(on)

 

0

 

 

 

 

 

 

±50

±25

25

50

75

100

125

150

 

 

TJ, JUNCTION TEMPERATURE (°C)

 

 

R

 

 

 

 

Figure 5. On±Resistance Variation with

 

 

 

 

Temperature

 

 

 

100

 

 

 

 

 

 

 

 

VGS = 0 V

 

 

 

 

 

 

 

 

 

TJ = 125°C

 

 

 

(nA)

 

 

 

 

 

 

 

, LEAKAGE

10

 

 

 

 

 

 

 

 

 

 

 

 

 

DSS

 

 

 

100°C

 

 

 

I

 

 

 

 

 

 

 

1.0

 

 

 

 

 

 

 

0

5.0

10

15

20

25

30

 

 

VDS, DRAIN±TO±SOURCE VOLTAGE (VOLTS)

 

Figure 6. Drain±To±Source Leakage

Current versus Voltage

4

Motorola TMOS Power MOSFET Transistor Device Data

MMDF4C03HD

POWER MOSFET SWITCHING

Switching behavior is most easily modeled and predicted by recognizing that the power MOSFET is charge controlled. The lengths of various switching intervals ( t) are determined by how fast the FET input capacitance can be charged by current from the generator.

The published capacitance data is difficult to use for calculating rise and fall because drain±gate capacitance varies greatly with applied voltage. Accordingly, gate charge data is used. In most cases, a satisfactory estimate of average input

current (IG(AV)) can be made from a rudimentary analysis of the drive circuit so that

t = Q/IG(AV)

During the rise and fall time interval when switching a resistive load, VGS remains virtually constant at a level known as the plateau voltage, VSGP. Therefore, rise and fall times may be approximated by the following:

tr = Q2 x RG/(VGG ± VGSP) tf = Q2 x RG/VGSP

where

VGG = the gate drive voltage, which varies from zero to VGG RG = the gate drive resistance

and Q2 and VGSP are read from the gate charge curve.

During the turn±on and turn±off delay times, gate current is not constant. The simplest calculation uses appropriate values from the capacitance curves in a standard equation for voltage change in an RC network. The equations are:

td(on) = RG Ciss In [VGG/(VGG ± VGSP)]

 

 

 

 

 

 

 

N±Channel

 

 

 

 

 

1200

 

 

 

 

 

 

TJ = 25°C

 

 

 

 

 

 

 

 

 

 

 

1000

 

 

 

 

 

 

 

 

(pF)

800

 

 

 

 

 

 

 

 

CAPACITANCE

 

 

 

 

 

 

 

 

600

 

 

 

 

 

 

Ciss

 

 

 

 

 

 

 

 

 

400

 

 

 

 

 

 

 

 

C,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Coss

 

 

 

 

 

 

 

 

 

 

 

200

 

 

 

 

 

 

Crss

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

±10

±5.0

0

5.0

10

15

20

25

30

 

 

 

VGS

VDS

 

 

 

 

 

 

 

 

VDS, DRAIN±TO±SOURCE VOLTAGE (VOLTS)

 

td(off) = RG Ciss In (VGG/VGSP)

The capacitance (Ciss) is read from the capacitance curve at a voltage corresponding to the off±state condition when cal-

culating td(on) and is read at a voltage corresponding to the on±state when calculating td(off).

At high switching speeds, parasitic circuit elements complicate the analysis. The inductance of the MOSFET source lead, inside the package and in the circuit wiring which is common to both the drain and gate current paths, produces a voltage at the source which reduces the gate drive current. The voltage is determined by Ldi/dt, but since di/dt is a function of drain current, the mathematical solution is complex. The MOSFET output capacitance also complicates the mathematics. And finally, MOSFETs have finite internal gate resistance which effectively adds to the resistance of the driving source, but the internal resistance is difficult to measure and, consequently, is not specified.

The resistive switching time variation versus gate resistance (Figure 9) shows how typical switching performance is affected by the parasitic circuit elements. If the parasitics were not present, the slope of the curves would maintain a value of unity regardless of the switching speed. The circuit used to obtain the data is constructed to minimize common inductance in the drain and gate circuit loops and is believed readily achievable with board mounted components. Most power electronic loads are inductive; the data in the figure is taken with a resistive load, which approximates an optimally snubbed inductive load. Power MOSFETs may be safely operated into an inductive load; however, snubbing reduces switching losses.

 

 

 

 

P±Channel

 

 

 

 

 

1000

 

 

 

 

 

 

 

 

 

800

 

 

 

 

 

 

TJ = 25°C

 

 

 

 

 

 

 

 

 

 

(pF)

 

 

 

 

 

 

 

 

 

C, CAPACITANCE

600

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ciss

 

400

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Coss

 

 

200

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Crss

 

 

0

±5.0

0

5.0

10

15

 

 

 

 

±10

20

25

30

VGS VDS

VDS, DRAIN±TO±SOURCE VOLTAGE (VOLTS)

Figure 7. Capacitance Variation

Figure 7. Capacitance Variation

Motorola TMOS Power MOSFET Transistor Device Data

5

MMDF4C03HD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GATE±TO±SOURCEVOLTAGE (VOLTS)

12

 

 

 

 

 

 

 

30

V

GATE±TO±SOURCEVOLTAGE (VOLTS)

7.0

 

 

 

QT

 

 

 

30

V

11

 

 

 

QT

 

 

 

 

DS

 

 

 

 

 

 

 

 

DS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VOLTAGE DRAIN±TO±SOURCE ,

6.0

 

 

 

 

 

 

 

 

VOLTAGE DRAIN±TO±SOURCE ,

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VGS

 

9.0

 

 

 

 

 

 

 

VGS

5.0

 

 

 

 

 

 

 

8.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

7.0

Q1

Q2

 

 

 

 

 

 

4.0

Q1

Q2

 

 

 

 

 

 

6.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.0

 

 

 

 

 

 

 

 

3.0

 

 

 

 

 

 

 

 

4.0

 

 

 

 

 

ID = 5 A

 

10

2.0

 

 

 

 

 

ID = 3 A

10

3.0

 

 

 

 

 

TJ = 25°C

 

 

 

 

 

 

TJ = 25°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

(VOLTS)

,

1.0

 

 

 

 

 

 

 

 

(VOLTS)

GS 1.0

 

 

 

 

V

 

 

 

GS

 

 

 

 

VDS

 

 

 

Q3

 

 

 

 

 

 

 

Q3

 

 

 

 

 

 

V

0

 

 

 

DS

 

 

0

V

0

 

 

 

 

 

0

 

2.0

4.0

6.0

8.0

10

12

14

 

 

2.0

4.0

6.0

8.0

10

12

14

 

 

0

16

 

 

0

16

 

 

 

 

Qg, TOTAL GATE CHARGE (nC)

 

 

 

 

 

 

 

Qg, TOTAL GATE CHARGE (nC)

 

 

 

 

Figure 8. Gate±To±Source and Drain±To±Source

Figure 8. Gate±To±Source and Drain±To±Source

Voltage versus Total Charge

Voltage versus Total Charge

t, TIME (ns)

1000

 

 

VDD = 15 V

 

ID = 6 A

 

VGS = 10 V

100

TJ = 25°C

td(off)

 

tf

10

tr

 

td(on)

1.0

1.0 10

RG, GATE RESISTANCE (OHMS)

 

1000

 

 

 

VDD = 15 V

 

 

 

ID = 3 A

 

 

 

VGS = 10 V

td(off)

 

 

TJ = 25°C

 

 

100

tf

 

 

t, TIME (ns)

tr

 

 

10

td(on)

 

100

1.0

 

 

1.0

10

100

RG, GATE RESISTANCE (OHMS)

Figure 9. Resistive Switching Time Variation

Figure 9. Resistive Switching Time Variation

versus Gate Resistance

versus Gate Resistance

6

Motorola TMOS Power MOSFET Transistor Device Data

MMDF4C03HD

DRAIN±TO±SOURCE DIODE CHARACTERISTICS

The switching characteristics of a MOSFET body diode are very important in systems using it as a freewheeling or commutating diode. Of particular interest are the reverse recovery characteristics which play a major role in determining switching losses, radiated noise, EMI and RFI.

System switching losses are largely due to the nature of the body diode itself. The body diode is a minority carrier device, therefore it has a finite reverse recovery time, trr, due to the storage of minority carrier charge, QRR, as shown in the typical reverse recovery wave form of Figure 15. It is this stored charge that, when cleared from the diode, passes through a potential and defines an energy loss. Obviously, repeatedly forcing the diode through reverse recovery further increases switching losses. Therefore, one would like a diode with short trr and low QRR specifications to minimize these losses.

The abruptness of diode reverse recovery effects the amount of radiated noise, voltage spikes, and current ringing. The mechanisms at work are finite irremovable circuit parasitic inductances and capacitances acted upon by high

N±Channel

5.0

4.5VGS = 0 V

TJ = 25°C

(AMPS)

4.0

 

 

 

 

 

 

 

 

3.5

 

 

 

 

 

 

 

 

CURRENT

3.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5

 

 

 

 

 

 

 

 

SOURCE,

2.0

 

 

 

 

 

 

 

 

1.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

1.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

 

0

 

 

 

 

0.75

0.80

 

 

 

0.50

0.55

0.60

0.65

0.70

0.85

0.90

VSD, SOURCE±TO±DRAIN VOLTAGE (VOLTS)

Figure 10. Diode Forward Voltage versus Current

di/dts. The diode's negative di/dt during ta is directly controlled by the device clearing the stored charge. However, the positive di/dt during tb is an uncontrollable diode characteristic and is usually the culprit that induces current ringing. Therefore, when comparing diodes, the ratio of tb/ta serves as a good indicator of recovery abruptness and thus gives a comparative estimate of probable noise generated. A ratio of 1 is considered ideal and values less than 0.5 are considered snappy.

Compared to Motorola standard cell density low voltage MOSFETs, high cell density MOSFET diodes are faster (shorter trr), have less stored charge and a softer reverse recovery characteristic. The softness advantage of the high cell density diode means they can be forced through reverse recovery at a higher di/dt than a standard cell MOSFET diode without increasing the current ringing or the noise generated. In addition, power dissipation incurred from switching the diode will be less due to the shorter recovery time and lower switching losses.

 

 

 

 

P±Channel

 

 

 

 

 

2.5

 

 

 

 

 

 

 

 

 

VGS = 0 V

 

 

 

 

 

 

 

 

TJ = 25°C

 

 

 

 

 

 

 

(AMPS)

2.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CURRENT

1.5

 

 

 

 

 

 

 

 

1.0

 

 

 

 

 

 

 

 

, SOURCE

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

S

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

 

 

VSD, SOURCE±TO±DRAIN VOLTAGE (VOLTS)

 

 

Figure 10. Diode Forward Voltage versus Current

Motorola TMOS Power MOSFET Transistor Device Data

7

MMDF4C03HD

di/dt = 300 A/μs

Standard Cell Density

 

trr

CURRENT

High Cell Density

trr

tb

ta

, SOURCE

 

S

 

I

 

t, TIME

Figure 11. Reverse Recovery Time (trr)

SAFE OPERATING AREA

The Forward Biased Safe Operating Area curves define the maximum simultaneous drain±to±source voltage and drain current that a transistor can handle safely when it is forward biased. Curves are based upon maximum peak junction temperature and a case temperature (TC) of 25°C. Peak repetitive pulsed power limits are determined by using the thermal response data in conjunction with the procedures discussed in AN569, ªTransient Thermal Resistance ± General Data and Its Use.º

Switching between the off±state and the on±state may traverse any load line provided neither rated peak current (IDM) nor rated voltage (VDSS) is exceeded, and that the transition time (tr, tf) does not exceed 10 μs. In addition the total power averaged over a complete switching cycle must not exceed

(TJ(MAX) ± TC)/(RθJC).

A power MOSFET designated E±FET can be safely used in switching circuits with unclamped inductive loads. For reli-

able operation, the stored energy from circuit inductance dissipated in the transistor while in avalanche must be less than the rated limit and must be adjusted for operating conditions differing from those specified. Although industry practice is to rate in terms of energy, avalanche energy capability is not a constant. The energy rating decreases non±linearly with an increase of peak current in avalanche and peak junction temperature.

Although many E±FETs can withstand the stress of drain± to±source avalanche at currents up to rated pulsed current (IDM), the energy rating is specified at rated continuous current (ID), in accordance with industry custom. The energy rating must be derated for temperature as shown in the accompanying graph (Figure 13). Maximum energy at currents below rated continuous ID can safely be assumed to equal the values indicated.

 

 

N±Channel

 

 

 

100

VGS = 12 V

 

 

 

 

 

 

 

 

SINGLE PULSE

 

 

(AMPS)

10

TA = 25°C

 

1.0 ms

 

 

 

 

 

 

 

CURRENT

 

10 ms

 

 

1.0

 

 

 

 

 

 

 

,DRAIN

 

dc

 

 

0.1

 

 

 

D

RDS(on) LIMIT

 

 

I

 

 

 

 

 

 

 

 

 

THERMAL LIMIT

 

 

 

 

PACKAGE LIMIT

 

 

 

0.01

 

 

 

 

0.1

1.0

10

100

VDS, DRAIN±TO±SOURCE VOLTAGE (VOLTS)

Figure 12. Maximum Rated Forward Biased

Safe Operating Area

 

 

P±Channel

 

 

 

100

 

 

 

 

VGS = 12 V

 

 

1.0 ms

 

SINGLE PULSE

 

 

(AMPS)

TA = 25°C

 

 

 

10

 

 

 

 

 

 

 

CURRENT

 

10 ms

 

 

1.0

 

 

 

 

 

 

 

,DRAIN

 

dc

 

 

0.1

 

 

 

D

RDS(on) LIMIT

 

 

I

 

 

 

 

 

 

 

 

 

THERMAL LIMIT

 

 

 

0.01

PACKAGE LIMIT

 

 

 

 

 

 

 

0.1

1.0

10

100

VDS, DRAIN±TO±SOURCE VOLTAGE (VOLTS)

Figure 12. Maximum Rated Forward Biased

Safe Operating Area

8

Motorola TMOS Power MOSFET Transistor Device Data

 

 

 

 

N±Channel

 

 

 

SINGLE PULSE DRAIN±TO±SOURCE

 

350

 

 

 

 

 

 

 

300

 

 

 

 

ID = 6 A

 

AVALANCHE ENERGY (mJ)

250

 

 

 

 

 

 

200

 

 

 

 

 

 

150

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

50

 

 

 

 

 

 

AS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E

 

0

 

 

 

 

 

 

 

 

45

65

85

105

125

 

 

 

25

145

 

 

 

TJ, STARTING JUNCTION TEMPERATURE (°C)

 

Figure 13. Maximum Avalanche Energy versus Starting Junction Temperature

 

 

 

 

 

 

MMDF4C03HD

 

 

 

 

P±Channel

 

 

 

SINGLE PULSE DRAIN±TO±SOURCE

 

500

 

 

 

 

 

 

 

450

 

 

 

 

ID = 3 A

 

AVALANCHE ENERGY (mJ)

400

 

 

 

 

 

 

350

 

 

 

 

 

 

300

 

 

 

 

 

 

250

 

 

 

 

 

 

200

 

 

 

 

 

 

150

 

 

 

 

 

 

100

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

AS

 

50

 

 

 

 

 

 

E

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25

45

65

85

105

125

145

 

 

 

TJ, STARTING JUNCTION TEMPERATURE (°C)

 

Figure 13. Maximum Avalanche Energy versus Starting Junction Temperature

TYPICAL ELECTRICAL CHARACTERISTICS

 

 

10

 

 

 

 

 

 

 

 

 

Rthja(t), EFFECTIVE TRANSIENT

THERMAL RESISTANCE

1.0

 

 

 

 

 

 

 

 

 

 

D = 0.5

 

 

 

 

 

 

 

 

0.1

0.2

 

 

 

 

 

 

 

 

0.1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.05

 

 

 

 

 

 

 

 

0.01

0.02

 

 

 

 

 

 

 

 

0.01

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SINGLE PULSE

 

 

 

 

 

 

 

 

 

0.001

0.00001

0.0001

0.001

0.01

0.1

1.0

10

100

1000

 

 

 

t, TIME (seconds)

Figure 14. Thermal Response

di/dt

 

IS

 

 

trr

ta

tb

 

TIME

tp

0.25 IS

IS

Figure 15. Diode Reverse Recovery Waveform

Motorola TMOS Power MOSFET Transistor Device Data

9

MMDF4C03HD

INFORMATION FOR USING THE SO±8 SURFACE MOUNT PACKAGE

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to ensure proper solder connection interface

between the board and the package. With the correct pad geometry, the packages will self±align when subjected to a solder reflow process.

 

0.060

 

1.52

0.275

0.155

7.0

4.0

 

0.024

0.050

0.6

1.270

inches

mm

SO±8 POWER DISSIPATION

The power dissipation of the SO±8 is a function of the input pad size. This can vary from the minimum pad size for soldering to the pad size given for maximum power dissipation. Power dissipation for a surface mount device is

determined by TJ(max), the maximum rated junction temperature of the die, RθJA, the thermal resistance from the

device junction to ambient; and the operating temperature, TA. Using the values provided on the data sheet for the SO±8 package, PD can be calculated as follows:

PD =

TJ(max) ± TA

RθJA

 

The values for the equation are found in the maximum ratings table on the data sheet. Substituting these values into

the equation for an ambient temperature TA of 25°C, one can calculate the power dissipation of the device which in this case is 2.0 Watts.

PD =

150°C ± 25°C

= 2.0 Watts

 

62.5°C/W

 

 

The 62.5°C/W for the SO±8 package assumes the recommended footprint on a glass epoxy printed circuit board to achieve a power dissipation of 2.0 Watts using the footprint shown. Another alternative would be to use a ceramic substrate or an aluminum core board such as Thermal Clad . Using board material such as Thermal Clad, the power dissipation can be doubled using the same footprint.

SOLDERING PRECAUTIONS

The melting temperature of solder is higher than the rated temperature of the device. When the entire device is heated to a high temperature, failure to complete soldering within a short time could result in device failure. Therefore, the following items should always be observed in order to minimize the thermal stress to which the devices are subjected.

Always preheat the device.

The delta temperature between the preheat and soldering should be 100°C or less.*

When preheating and soldering, the temperature of the leads and the case must not exceed the maximum temperature ratings as shown on the data sheet. When

using infrared heating with the reflow soldering method, the difference shall be a maximum of 10°C.

The soldering temperature and time shall not exceed 260°C for more than 10 seconds.

When shifting from preheating to soldering, the maximum temperature gradient shall be 5°C or less.

After soldering has been completed, the device should be allowed to cool naturally for at least three minutes. Gradual cooling should be used as the use of forced cooling will increase the temperature gradient and result in latent failure due to mechanical stress.

Mechanical stress or shock should not be applied during cooling.

* Soldering a device without preheating can cause excessive thermal shock and stress which can result in damage to the device.

10

Motorola TMOS Power MOSFET Transistor Device Data

Соседние файлы в папке mos