Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

motorola / СВЧ / mrf317rev7

.pdf
Источник:
Скачиваний:
2
Добавлен:
06.01.2022
Размер:
117.97 Кб
Скачать

MOTOROLA

SEMICONDUCTOR TECHNICAL DATA

Order this document by MRF317/D

The RF Line

NPN Silicon

RF Power Transistor

. . . designed primarily for wideband large±signal output amplifier stages in 30±200 MHz frequency range.

Guaranteed Performance at 150 MHz, 28 Vdc Output Power = 100 W

Minimum Gain = 9.0 dB

Built±In Matching Network for Broadband Operation

100% Tested for Load Mismatch at all Phase Angles with 30:1 VSWR

Gold Metallization System for High Reliability

High Output Saturation Power Ð Ideally Suited for 30 W Carrier/120 W Peak AM Amplifier Service

Guaranteed Performance in Broadband Test Fixture

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

 

 

 

 

Collector±Emitter Voltage

VCEO

35

Vdc

Collector±Base Voltage

VCBO

65

Vdc

Emitter±Base Voltage

VEBO

4.0

Vdc

Collector Current Ð Continuous

IC

12

Adc

Ð Peak (10 seconds)

 

18

 

 

 

 

 

Total Device Dissipation @ TC = 25°C (1)

PD

270

Watts

Derate above 25°C

 

1.54

W/°C

 

 

 

 

Storage Temperature Range

Tstg

± 65 to +150

°C

THERMAL CHARACTERISTICS

MRF317

100 W, 30 ± 200 MHz

CONTROLLED Q

BROADBAND RF POWER

TRANSISTOR

NPN SILICON

CASE 316±01, STYLE 1

Characteristic

 

Symbol

Max

 

Unit

 

 

 

 

 

 

 

Thermal Resistance, Junction to Case

 

RθJC

0.65

 

°C/W

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted.)

 

 

 

 

 

Characteristic

Symbol

Min

Typ

 

Max

Unit

 

 

 

 

 

 

 

OFF CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

 

 

Collector±Emitter Breakdown Voltage

V(BR)CEO

35

Ð

 

Ð

Vdc

(IC = 100 mAdc, IB = 0)

 

 

 

 

 

 

Collector±Emitter Breakdown Voltage

V(BR)CES

65

Ð

 

Ð

Vdc

(IC = 100 mAdc, VBE = 0)

 

 

 

 

 

 

Collector±Base Breakdown Voltage

V(BR)CBO

65

Ð

 

Ð

Vdc

(IC = 100 mAdc, IE = 0)

 

 

 

 

 

 

Emitter±Base Breakdown Voltage

V(BR)EBO

4.0

Ð

 

Ð

Vdc

(IE = 10 mAdc, IC = 0)

 

 

 

 

 

 

Collector Cutoff Current

ICBO

Ð

Ð

 

5.0

mAdc

(VCB = 30 Vdc, IE = 0)

 

 

 

 

 

 

ON CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

 

 

DC Current Gain

hFE

10

25

 

80

Ð

(IC = 5.0 Adc, VCE = 5.0 Vdc)

 

 

 

 

 

 

NOTE:

 

 

 

 

 

(continued)

1. This device is designed for RF operation. The total device dissipation rating applies only when the device is operated as an RF amplifier.

REV 7

MOTOROLAMotorola, Inc. 1997RF DEVICE DATA

MRF317

 

1

ELECTRICAL CHARACTERISTICS Ð continued (TC = 25°C unless otherwise noted.)

Characteristic

Symbol

Min

 

Typ

Max

 

Unit

 

 

 

 

 

 

 

 

DYNAMIC CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output Capacitance

Cob

Ð

 

150

175

 

pF

(VCB = 28 Vdc, IE = 0, f = 1.0 MHz)

 

 

 

 

 

 

 

FUNCTIONAL TESTS (Figure 2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Common±Emitter Amplifier Power Gain

GPE

9.0

 

10

Ð

 

dB

(VCC = 28 Vdc, Pout = 100 W, f = 150 MHz, IC (Max) = 6.5 Adc)

 

 

 

 

 

 

 

Collector Efficiency

η

55

 

60

Ð

 

%

(VCC = 28 Vdc, Pout = 100 W, f = 150 MHz, IC (Max) = 6.5 Adc)

 

 

 

 

 

 

 

Load Mismatch

ψ

 

 

 

 

 

 

(VCC = 28 Vdc, Pout = 100 W CW, f = 150 MHz,

 

 

No Degradation in Output Power

 

VSWR = 30:1 all phase angles)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MRF317

MOTOROLA RF DEVICE DATA

2

 

 

 

 

 

 

 

R2

 

 

 

 

 

 

 

 

 

R3

 

 

 

 

 

 

 

RFC3

RFC5

 

 

 

 

 

 

R1

C5

C13

RFC6

 

 

 

 

RFC2

 

 

DC + 28 Vdc

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C11

 

C12

 

 

 

 

 

RFC1

RFC4

 

 

 

 

 

 

 

 

L3

 

 

L4

C10

RF

 

 

 

 

 

 

 

C1

L2

 

 

 

 

 

 

RF

 

 

 

 

 

 

OUTPUT

 

 

 

 

 

 

 

 

INPUT

 

 

 

DUT

 

 

 

 

 

 

 

 

 

C6

C7

C8

C9

 

 

L1

C2

C3

C4

 

 

 

 

 

 

 

C1, C9 Ð 39 pF, 100 mil ATC

C11 Ð 60 pF, Underwood

 

RFC1 Ð 0.15 mH Molded Coil

 

C2 Ð 120 pF, 100 mil ATC

 

C12 Ð 0.1 mF Erie Redcap

 

RFC2, RFC3 Ð Ferroxcube Bead 56±590±65/3B

C3, C4 Ð 360 pF, 100 mil ATC

C13 Ð 1000 pF, Underwood J102

 

RFC4 Ð 1 Turn, #18 Wire, 2.0 ″ L

 

C5 Ð 1000 pF Dipped Mica

L1 Ð 50 nH

 

RFC5 Ð Ferroxcube VK200 19/4B

 

C6, C7 Ð 100 pF, 100 mil ATC*

L2 Ð 6.0 nH

 

RFC6 Ð 7 Turns, #18 Wire, 0.3 ″ ID

 

C8 Ð 18 pF, 100 mil ATC*

 

L3 Ð 8.0 nH

 

R1 Ð 10

W 1/2 W

 

 

C10 Ð 43 pF, 100 mil ATC

 

L4 Ð 32 nH

 

R2, R3 Ð 10 W 1.0 W

 

 

*Combination of C6, C7, C8 equals 220 pF.

Figure 1. 110 ± 160 MHz Broadband Amplifier Ð Test Fixture Schematic

 

10

 

 

(dB)

9

 

 

GAIN

 

 

 

 

 

, POWER

8

 

 

 

 

 

PE

7

 

Pout = 100 W

G

 

 

 

 

VCC = 28 V

 

6

 

 

 

110

135

160

f, FREQUENCY (MHz)

Figure 2. Power Gain versus Frequency

Broadband Test Fixture

 

70

 

 

 

60

 

 

η (%)

50

 

 

EFFICIENCY,

 

 

40

 

 

 

 

Pout = 100 W

 

30

 

 

 

VCC = 28 V

 

20

 

 

 

110

135

160

f, FREQUENCY (MHz)

Figure 3. Efficiency versus Frequency

Broadband Test Fixture

 

6

 

 

 

140

 

 

 

f = 30 MHz

50 MHz

 

 

 

 

Pout = 100 W

 

 

VCC = 28 V

 

 

 

 

 

 

(WATTS)

120

 

 

 

 

 

 

5

 

VCC = 28 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

INPUT VSWR

4

 

 

OUTPUT POWER

 

 

 

 

 

 

 

 

 

 

80

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

60

 

 

 

 

200 MHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

2

 

 

out

40

 

 

 

 

150 MHz

 

 

 

 

 

P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100 MHz

 

 

1

135

 

160

20

0.5

1

2

5

10

20

 

110

 

0.2

 

 

f, FREQUENCY (MHz)

 

 

 

 

Pin, INPUT POWER (WATTS)

 

 

Figure 4. Input VSWR versus Frequency

Figure 5. Output Power versus Input Power

Broadband Test Fixture

 

 

 

MOTOROLA RF DEVICE DATA

MRF317

 

3

TYPICAL PERFORMANCE CURVES

(dB)

 

 

 

 

 

 

 

 

 

 

120

17

 

 

 

 

 

 

 

 

 

 

EMITTER POWER GAIN

 

 

 

 

 

 

 

Pout = 100 W

 

 

 

 

 

 

 

 

 

 

16

 

 

 

 

 

 

 

VCC = 28 V

100

15

 

 

 

 

 

 

 

 

POWER OUTPUT(WATTS)

 

14

 

 

 

 

 

 

 

 

80

13

 

 

 

 

 

 

 

 

 

12

 

 

 

 

 

 

 

 

60

11

 

 

 

 

 

 

 

 

 

COMMON

 

 

 

 

 

 

 

 

,

 

10

 

 

 

 

 

 

 

 

out

40

 

 

 

 

 

 

 

 

P

,

 

 

 

 

 

 

 

 

 

 

 

PE

9

 

 

 

 

 

 

 

 

 

 

G

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

8

40

60

80

100

120

140

160

180

200

 

20

 

f, FREQUENCY (MHz)

 

 

 

Pin = 10 W

 

 

 

 

8 W

 

 

 

 

6 W

 

 

 

 

f = 100 MHz

12

16

20

24

28

 

VCC, SUPPLY VOLTAGE (VOLTS)

 

Figure 6. Power Gain versus Frequency

Figure 7. Power Output versus Supply Voltage

 

120

 

 

 

 

 

 

(WATTS)

100

 

 

 

Pin = 10 W

(WATTS)

100

 

 

 

8 W

 

 

 

 

 

 

 

 

 

6 W

 

OUTPUT

80

 

 

 

OUTPUT

80

 

 

 

 

 

 

 

 

 

 

, POWER

60

 

 

 

 

, POWER

60

 

 

 

 

 

 

out

40

 

 

 

 

out

40

P

 

 

 

 

f = 150 MHz

P

 

 

 

 

 

 

 

 

 

20

16

20

24

28

 

20

 

12

 

 

 

 

 

 

Pin = 10 W

 

 

 

 

8 W

 

 

 

 

6 W

 

 

 

 

f = 200 MHz

12

16

20

24

28

VCC, SUPPLY VOLTAGE (VOLTS)

VCC, SUPPLY VOLTAGE (VOLTS)

Figure 8. Power Output versus Supply Voltage

Figure 9. Power Output versus Supply Voltage

 

 

1.0

0

1.0

 

 

 

 

 

 

 

 

 

 

 

 

2.0

Zin

100

125

2.0

 

 

 

 

 

 

 

 

 

 

150

 

 

VCC = 28 V, Pout = 100 W

3.0

50

200

1.0200

 

3.0

4.0

f = 30 MHz

175

 

175

 

f

Zin

ZOL*

 

 

 

MHz

OHMS

OHMS

 

2.0

 

 

 

100

150

 

 

30

1.2 ± j2.0

4.3 ± j5.0

 

 

 

 

 

 

 

 

 

 

 

125

3.0

 

 

50

1.0 ± j1.8

4.0 ± j4.9

 

 

 

 

 

 

 

 

 

 

100

0.3 + j0.7

2.0 ± j2.3

 

ZOL*

 

 

 

 

 

 

4.0

 

 

125

0.3 + j1.0

1.9 ± j1.9

 

 

 

 

 

150

0.6 + j1.3

1.9 ± j1.3

 

 

 

 

 

 

 

50

 

5.0

 

 

175

1.0 + j1.5

1.6 ± j0.6

 

 

6.0

 

 

200

0.9 + j1.0

1.1 ± j0.6

 

f = 30 MHz

 

 

 

 

 

ZOL* = Conjugate of the optimum load impedance into which the device output

 

 

ZOL* = operates at a given output power, voltage and frequency.

 

 

 

 

Figure 10. Series Equivalent Input±Output Impedance

 

MRF317

 

 

 

 

 

 

MOTOROLA RF DEVICE DATA

4

 

 

 

 

 

 

 

 

PACKAGE DIMENSIONS

D

F

 

 

4

R

K

3

 

1

Q

2

 

 

L

B

C

J

 

E

 

 

N

H

 

A

U

CASE 316±01

ISSUE D

NOTES:

1. FLANGE IS ISOLATED IN ALL STYLES.

 

INCHES

MILLIMETERS

DIM

MIN

MAX

MIN

MAX

A

24.38

25.14

0.960

0.990

B

12.45

12.95

0.490

0.510

C

5.97

7.62

0.235

0.300

D

5.33

5.58

0.210

0.220

E

2.16

3.04

0.085

0.120

F

5.08

5.33

0.200

0.210

H

18.29

18.54

0.720

0.730

J

0.10

0.15

0.004

0.006

K

10.29

11.17

0.405

0.440

L

3.81

4.06

0.150

0.160

N

3.81

4.31

0.150

0.170

Q

2.92

3.30

0.115

0.130

R

3.05

3.30

0.120

0.130

U

11.94

12.57

0.470

0.495

STYLE 1:

PIN 1. EMITTER

2.COLLECTOR

3.EMITTER

4.BASE

MOTOROLA RF DEVICE DATA

MRF317

 

5

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. ªTypicalº parameters can and do vary in different applications. All operating parameters, including ªTypicalsº must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England. JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

MRF317/D

 

MOTOROLA RF DEVICE DATA

 

*MRF317/D*

Соседние файлы в папке СВЧ