Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

motorola / СВЧ / mrf174rev7

.pdf
Источник:
Скачиваний:
2
Добавлен:
06.01.2022
Размер:
172.09 Кб
Скачать

MOTOROLA

SEMICONDUCTOR TECHNICAL DATA

Order this document by MRF174/D

The RF MOSFET Line

 

 

 

RF Power Field Effect Transistor

 

 

N±Channel Enhancement±Mode

MRF174

. . . designed primarily for wideband large±signal output and driver stages up to

 

 

200 MHz frequency range.

 

 

Guaranteed Performance at 150 MHz, 28 Vdc

 

 

 

 

 

 

Output Power = 125 Watts

 

 

 

 

 

 

Minimum Gain = 9.0 dB

 

125 W, to 200 MHz

Efficiency = 50% (Min)

 

N±CHANNEL MOS

Excellent Thermal Stability, Ideally Suited For Class A

 

BROADBAND RF POWER

 

FET

Operation

 

 

 

 

Facilitates Manual Gain Control, ALC and Modulation

 

 

 

 

 

 

Techniques

 

 

 

 

 

 

100% Tested For Load Mismatch At All Phase Angles

 

 

With 30:1 VSWR

 

 

Low Noise Figure Ð 3.0 dB Typ at 2.0 A, 150 MHz

 

 

 

 

D

 

 

G

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CASE 211±11, STYLE 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MAXIMUM RATINGS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rating

 

Symbol

Value

 

Unit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Drain±Source Voltage

 

VDSS

65

 

 

 

Vdc

Drain±Gate Voltage

 

VDGR

65

 

 

 

Vdc

(RGS = 1.0 MΩ)

 

 

 

 

 

 

 

 

 

Gate±Source Voltage

 

VGS

± 40

 

 

 

Vdc

Drain Current Ð Continuous

 

ID

13

 

 

 

Adc

Total Device Dissipation @ TC = 25°C

 

PD

270

 

 

 

Watts

Derate above 25°C

 

 

 

1.54

 

 

 

W/°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Storage Temperature Range

 

Tstg

± 65 to +150

 

°C

Operating Junction Temperature

 

TJ

200

 

 

 

°C

THERMAL CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Characteristic

 

Symbol

Max

 

Unit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thermal Resistance, Junction to Case

 

RθJC

0.65

 

 

 

°C/W

Handling and Packaging Ð MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

REV 7

MOTOROLAMotorola, Inc. 1997RF DEVICE DATA

MRF174

 

1

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted.)

Characteristic

Symbol

Min

Typ

Max

Unit

 

 

 

 

 

 

OFF CHARACTERISTICS

Drain±Source Breakdown Voltage (VGS = 0, ID = 50 mA)

V(BR)DSS

65

 

Ð

Ð

 

Vdc

Zero Gate Voltage Drain Current (VDS = 28 V, VGS = 0)

IDSS

Ð

 

Ð

10

 

mAdc

Gate±Source Leakage Current (VGS = 20 V, VDS = 0)

IGSS

Ð

 

Ð

1.0

 

mAdc

ON CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gate Threshold Voltage (VDS = 10 V, ID = 100 mA)

VGS(th)

1.0

 

3.0

6.0

 

Vdc

Forward Transconductance (VDS = 10 V, ID = 3.0 A)

gfs

1.75

 

2.5

Ð

 

mhos

DYNAMIC CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz)

Ciss

Ð

 

175

Ð

 

pF

Output Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz)

Coss

Ð

 

190

Ð

 

pF

Reverse Transfer Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz)

Crss

Ð

 

40

Ð

 

pF

FUNCTIONAL CHARACTERISTICS (Figure 1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Noise Figure

NF

Ð

 

3.0

Ð

 

dB

(VDD = 28 Vdc, ID = 2.0 A, f = 150 MHz)

 

 

 

 

 

 

 

Common Source Power Gain

Gps

9.0

 

11.8

Ð

 

dB

(VDD = 28 Vdc, Pout = 125 W, f = 150 MHz, IDQ = 100 mA)

 

 

 

 

 

 

 

Drain Efficiency

h

50

 

60

Ð

 

%

(VDD = 28 Vdc, Pout = 125 W, f = 150 MHz, IDQ = 100 mA)

 

 

 

 

 

 

 

Electrical Ruggedness

y

 

 

 

 

 

 

(VDD = 28 Vdc, Pout = 125 W, f = 150 MHz, IDQ = 100 mA,

 

 

No Degradation in Output Power

 

VSWR 30:1 at all Phase Angles)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L4

 

 

 

 

 

 

R2

 

C12

C13

+

BIAS

 

 

 

 

 

R1

 

 

 

 

 

 

 

VDD = 28 V

ADJUST

C9

+

D1

 

C11

C14

R3

C10

 

 

±

 

 

±

 

 

 

 

 

 

 

 

 

 

 

RFC1

 

 

 

 

 

 

 

R4

 

 

 

 

RF INPUT

C

 

 

 

 

 

C8

 

3

L1

 

L2

 

L3

 

RF OUTPUT

 

 

 

 

 

 

C1

C2

C4

 

C5

DUT

C6

C7

 

C1 Ð 15 pF Unelco

C2 Ð Arco 462, 5.0 ± 80 pF

C3 Ð 100 pF Unelco

C4 Ð 25 pF Unelco

C6 Ð 40 pF Unelco

C7 Ð Arco 461, 2.7 ± 30 pF

C5, C8 Ð Arco 463, 9.0 ± 180 pF

C9, C11, C14 Ð 0.1 mF Erie Redcap C10 Ð 50 mF, 50 V

C12, C13 Ð 680 pF Feedthru D1 Ð 1N5925A Motorola Zener

L1

Ð #16 AWG, 1±1/4 Turns, 0.213 ″ ID

L2

Ð #16 AWG, Hairpin

 

 

 

 

0.25″

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.062″

 

 

 

 

 

 

 

 

 

 

 

L3

Ð #14 AWG, Hairpin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.47″

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.2″

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L4

Ð 10 Turns #16 AWG Enameled Wire on R1

RFC1 Ð 18 Turns #16 AWG Enameled Wire, 0.3 ″ ID

R1

Ð 10 W, 2.0 W

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R2

Ð 1.8 k W, 1/2 W

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R3

Ð 10 k W, 10 Turn Bourns

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R4

Ð 10 k W, 1/4 W

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. 150 MHz Test Circuit

 

 

MRF174

MOTOROLA RF DEVICE DATA

2

 

 

140

 

f = 100 MHz

 

 

 

 

 

 

 

 

 

150 MHz

 

 

 

(WATTS)

120

 

 

 

 

 

 

 

 

 

 

 

 

200 MHz

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

POWER

80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

, OUTPUT

60

 

 

 

 

 

 

 

40

 

 

 

 

VDD = 28 V

 

out

 

 

 

 

 

I

= 100 mA

 

P

20

 

 

 

 

DQ

 

 

 

 

 

 

 

 

 

 

 

0

2

4

6

8

10

12

14

 

0

 

 

 

Pin, INPUT POWER (WATTS)

 

 

 

80

 

 

 

 

f = 100 MHz

 

 

 

70

 

 

 

 

150 MHz

 

(WATTS)

 

 

 

 

 

 

 

60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

200 MHz

 

POWER

50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40

 

 

 

 

 

 

 

 

, OUTPUT

30

 

 

 

 

 

 

 

 

20

 

 

 

 

VDD = 13.5 V

 

out

 

 

 

 

I

= 100 mA

 

 

 

 

 

 

 

P

10

 

 

 

 

DQ

 

 

 

 

 

 

 

 

 

 

 

 

 

0

2

4

6

8

10

12

14

16

 

0

 

 

 

 

Pin, INPUT POWER (WATTS)

 

 

 

Figure 2. Output Power versus Input Power

Figure 3. Output Power versus Input Power

Pout, OUTPUT POWER (WATTS)

160

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IDQ =

100 mA

 

 

 

 

 

 

 

 

 

 

 

 

140

 

 

 

 

 

 

 

 

 

 

 

Pin = 6

W

 

 

120

 

 

 

f = 100

MHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

4

W

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

W

 

 

60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12

14

16

18

20

22

24

26

28

VDD, SUPPLY VOLTAGE (VOLTS)

 

160

 

 

 

 

 

 

 

 

(WATTS)

140

IDQ = 100 mA

 

 

 

 

 

 

 

f = 150 MHz

 

 

Pin = 12 W

 

 

 

120

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8 W

 

 

 

POWER

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

80

 

 

 

 

 

 

 

 

,OUTPUT

60

 

 

 

 

4 W

 

 

 

 

 

 

 

 

 

 

 

40

 

 

 

 

 

 

 

 

out

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

12

14

16

18

20

22

24

26

28

 

 

 

VDD, SUPPLY VOLTAGE (VOLTS)

 

 

 

Figure 4. Output Power versus Supply Voltage

Figure 5. Output Power versus Supply Voltage

Pout, OUTPUT POWER (WATTS)

160

140IDQ = 100 mA f = 200 MHz

120

100

80

60

40

20

0

12

14

16

18

 

 

 

 

 

22

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

 

Pin = 16 W

 

 

18

 

 

 

 

 

Pout = 125 W

 

 

 

 

 

 

(dB)

16

 

 

 

 

 

VDD = 28 V

 

 

 

 

 

12 W

 

 

 

 

 

 

 

 

 

 

 

 

GAIN

14

 

 

 

 

 

IDQ = 100 mA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

POWER,

 

 

 

 

 

 

 

 

 

 

 

 

8 W

 

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PS

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

20

22

24

26

28

2

40

60

80

100

120

140

160

180

200

220

20

VDD, SUPPLY VOLTAGE (VOLTS)

f, FREQUENCY (MHz)

Figure 6. Output Power versus Supply Voltage

Figure 7. Power Gain versus Frequency

MOTOROLA RF DEVICE DATA

MRF174

 

3

 

160

 

 

 

 

 

 

 

 

140

f = 150 MHz

 

 

 

 

 

 

(WATTS)

VDD = 28 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pin = CONSTANT

 

 

 

 

 

POWER

120

IDQ = 100 mA

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OUTPUT,

80

 

 

 

 

 

 

 

60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

out

40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

0

 

TYPICAL DEVICE SHOWN, VGS(th) = 3 V

 

 

±12 ±10 ± 8

 

 

0

 

 

 

 

±14

± 6 ± 4

± 2

2

4

6

VGS, GATE±SOURCE VOLTAGE (VOLTS)

Figure 8. Output Power versus Gate Voltage

ID, DRAIN CURRENT (AMPS)

5

4

VDS = 10 V

3

2

TYPICAL DEVICE SHOWN, VGS(th) = 3 V

1

0

1

2

3

4

5

6

 

VGS, GATE±SOURCE VOLTAGE (VOLTS)

 

 

Figure 9. Drain Current versus Gate Voltage (Transfer Characteristics)

VOLTAGE(NORMALIZED)

1.2

 

 

 

 

 

 

 

 

1.1

 

 

 

 

VDD = 28 V

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

ID = 4 A

3 A

 

 

-SOURCE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 A

 

0.9

 

 

 

 

 

 

 

 

GATE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100 mA

 

,

 

 

 

 

 

 

 

 

 

GS

 

 

 

 

 

 

 

 

 

V

0.8

 

 

 

 

 

 

 

 

 

0

25

50

75

100

125

150

175

 

± 25

 

 

 

 

TC, CASE TEMPERATURE (°C)

 

 

 

 

1000

 

 

 

 

 

 

 

 

900

 

 

 

 

 

 

 

 

800

 

 

 

 

VGS = 0 V

 

 

 

 

 

 

 

f = 1 MHz

 

 

(pF)

 

 

 

 

 

 

 

700

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C, CAPACITANCE

600

 

 

 

 

 

 

 

500

 

 

 

 

 

 

 

400

 

 

 

 

 

 

 

300

 

 

 

 

Coss

 

 

 

200

 

 

 

 

Ciss

 

 

 

100

 

 

 

 

Crss

 

 

 

0

4

8

12

16

20

24

28

 

0

VDS, DRAIN±SOURCE VOLTAGE (VOLTS)

Figure 10. Gate±Source Voltage versus

Figure 11. Capacitance versus Drain Voltage

Case Temperature

 

20

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

(AMPS)

6

 

 

 

 

 

 

 

 

4

 

 

TC = 25°C

 

 

 

 

 

CURRENT

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

DRAIN

0.6

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

D

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

0.4

 

 

 

 

 

 

 

 

 

0.2

2

4

6

10

20

40

60

100

 

1

VDS, DRAIN±SOURCE VOLTAGE (VOLTS)

Figure 12. DC Safe Operating Area

MRF174

MOTOROLA RF DEVICE DATA

4

 

f

 

S11

 

S21

 

S12

 

S22

(MHz)

|S11|

 

φ

|S21|

 

φ

|S12|

 

φ

|S22|

 

φ

2.0

0.932

 

± 133

74.0

 

112

0.011

 

23

0.835

 

± 151

 

 

 

 

 

 

 

 

 

 

 

 

 

5.0

0.923

 

± 160

31.6

 

98

0.011

 

12

0.886

 

± 168

 

 

 

 

 

 

 

 

 

 

 

 

 

10

0.921

 

± 170

16.0

 

93

0.011

 

10

0.896

 

± 174

 

 

 

 

 

 

 

 

 

 

 

 

 

20

0.921

 

± 175

8.00

 

88

0.011

 

12

0.899

 

± 177

 

 

 

 

 

 

 

 

 

 

 

 

 

30

0.921

 

± 177

5.32

 

86

0.011

 

16

0.900

 

± 178

 

 

 

 

 

 

 

 

 

 

 

 

 

40

0.921

 

± 177

3.98

 

83

0.012

 

21

0.901

 

± 178

 

 

 

 

 

 

 

 

 

 

 

 

 

50

0.922

 

± 178

3.17

 

81

0.012

 

26

0.902

 

± 178

 

 

 

 

 

 

 

 

 

 

 

 

 

60

0.923

 

± 178

2.63

 

79

0.012

 

30

0.903

 

± 178

 

 

 

 

 

 

 

 

 

 

 

 

 

70

0.924

 

± 178

2.24

 

77

0.013

 

34

0.904

 

± 178

 

 

 

 

 

 

 

 

 

 

 

 

 

80

0.925

 

± 178

1.95

 

75

0.013

 

39

0.906

 

± 178

 

 

 

 

 

 

 

 

 

 

 

 

 

90

0.927

 

± 178

1.72

 

73

0.014

 

43

0.907

 

± 178

 

 

 

 

 

 

 

 

 

 

 

 

 

100

0.930

 

± 178

1.50

 

71

0.016

 

45

0.910

 

± 178

 

 

 

 

 

 

 

 

 

 

 

 

 

110

0.930

 

± 178

1.31

 

70

0.018

 

46

0.912

 

± 178

 

 

 

 

 

 

 

 

 

 

 

 

 

120

0.931

 

± 178

1.19

 

68

0.019

 

47

0.914

 

± 178

 

 

 

 

 

 

 

 

 

 

 

 

 

130

0.942

 

± 178

1.10

 

67

0.019

 

49

0.919

 

± 178

 

 

 

 

 

 

 

 

 

 

 

 

 

140

0.936

 

± 178

1.01

 

66

0.021

 

50

0.921

 

± 178

 

 

 

 

 

 

 

 

 

 

 

 

 

150

0.938

 

± 178

0.936

 

65

0.021

 

53

0.922

 

± 178

 

 

 

 

 

 

 

 

 

 

 

 

 

160

0.938

 

± 178

0.879

 

64

0.022

 

53

0.923

 

± 178

 

 

 

 

 

 

 

 

 

 

 

 

 

170

0.940

 

± 178

0.830

 

63

0.023

 

54

0.923

 

± 177

 

 

 

 

 

 

 

 

 

 

 

 

 

180

0.942

 

± 178

0.780

 

61

0.024

 

56

0.924

 

± 177

 

 

 

 

 

 

 

 

 

 

 

 

 

190

0.942

 

± 178

0.737

 

60

0.026

 

59

0.928

 

± 177

 

 

 

 

 

 

 

 

 

 

 

 

 

200

0.952

 

± 178

0.705

 

59

0.027

 

58

0.929

 

± 177

 

 

 

 

 

 

 

 

 

 

 

 

 

210

0.950

 

± 178

0.668

 

57

0.029

 

61

0.934

 

± 177

 

 

 

 

 

 

 

 

 

 

 

 

 

220

0.942

 

± 178

0.626

 

56

0.030

 

61

0.933

 

± 177

 

 

 

 

 

 

 

 

 

 

 

 

 

230

0.943

 

± 178

0.592

 

56

0.032

 

62

0.939

 

± 177

 

 

 

 

 

 

 

 

 

 

 

 

 

240

0.946

 

± 177

0.566

 

55

0.033

 

64

0.941

 

± 177

 

 

 

 

 

 

 

 

 

 

 

 

 

250

0.952

 

± 177

0.545

 

54

0.035

 

64

0.943

 

± 177

 

 

 

 

 

 

 

 

 

 

 

 

 

260

0.958

 

± 177

0.523

 

53

0.036

 

65

0.946

 

± 177

 

 

 

 

 

 

 

 

 

 

 

 

 

270

0.956

 

± 177

0.500

 

52

0.038

 

67

0.943

 

± 177

 

 

 

 

 

 

 

 

 

 

 

 

 

280

0.960

 

± 177

0.481

 

52

0.039

 

68

0.946

 

± 177

 

 

 

 

 

 

 

 

 

 

 

 

 

290

0.956

 

± 178

0.460

 

51

0.042

 

68

0.944

 

± 177

 

 

 

 

 

 

 

 

 

 

 

 

 

300

0.955

 

± 178

0.443

 

50

0.043

 

68

0.947

 

± 177

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Common Source Scattering Parameters

VDS = 28 V, ID = 3.0 A

MOTOROLA RF DEVICE DATA

MRF174

 

5

 

 

 

 

+ j50

 

 

 

 

 

 

+ j25

 

 

 

 

+ j100

 

 

 

 

 

 

 

 

+ j150

+ j10

 

 

 

 

 

 

+ j250

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ j500

0

300

10

25

50

100

150

250

500

 

 

 

 

 

 

 

 

f = 30 MHz

 

 

 

 

 

± j500

 

 

 

 

 

 

 

 

± j10

 

 

 

 

 

 

± j250

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

± j150

 

 

± j25

 

 

 

 

± j100

 

 

 

 

 

 

 

 

 

 

 

 

± j50

 

 

 

 

Figure 13. S11, Input Reflection Coefficient

versus Frequency

 

 

 

VDS = 28 V, ID = 3.0 A

 

 

 

 

 

 

+ 90° f = 30 MHz

 

 

 

+120

°

 

+ 60°

 

 

 

 

 

 

 

°

 

 

 

 

50

+ 30°

 

 

 

 

 

+150

 

 

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

150

 

180° 5

4

3

2

1

300

°

 

 

 

 

 

 

0

±150°

 

 

 

 

 

± 30°

 

 

 

 

 

 

 

 

±120°

 

± 60°

 

 

 

 

 

 

 

 

 

 

 

± 90°

 

Figure 15. S21, Forward Transmission Coefficient versus Frequency

VDS = 28 V, ID = 3.0 A

 

 

 

 

 

+ 90°

 

 

 

°

 

 

+ 60°

 

 

 

+120

 

 

300

 

 

 

 

 

 

 

 

 

 

 

 

250

 

°

 

 

 

 

 

+ 30°

+150

 

 

 

 

200

 

 

 

 

 

 

 

 

 

 

 

 

150

 

 

 

 

 

 

100

 

180°.05

 

 

 

 

50

 

.04

.03

.02

.01

f = 30 MHz

°

 

 

 

 

 

 

0

±150°

 

 

 

 

 

± 30°

 

 

 

 

 

 

 

 

±120°

 

 

± 60°

 

 

 

 

 

 

 

 

 

 

 

 

± 90°

 

Figure 14. S12, Reverse Transmission Coefficient versus Frequency

VDS = 28 V, ID = 3.0 A

 

 

 

+ j50

 

 

+ j25

 

 

+ j100

 

 

 

 

+ j150

+ j10

 

 

 

+ j250

 

 

 

 

 

 

 

 

+ j500

0

f = 30 MHz

25

50

100 150 250 500

 

 

 

 

 

300

 

 

± j500

 

 

 

 

± j10

 

 

± j250

 

 

 

 

 

 

 

± j150

± j100

± j25

± j50

Figure 16. S22, Output Reflection Coefficient versus Frequency

VDS = 28 V, ID = 3.0 A

MRF174

MOTOROLA RF DEVICE DATA

6

 

150

f = 200 MHz

 

 

 

 

 

 

 

100

 

150

f = 200 MHz

 

 

 

 

 

 

 

100

 

Pout = 125 W, VDD = 28 V

 

 

Zin

 

 

 

 

ZOL*

 

 

IDQ = 100 mA

 

30

 

 

 

 

 

 

 

f

Zin

ZOL*

 

 

 

 

30

 

 

 

MHz

Ohms

Ohms

Zo = 10

Ω

 

 

 

 

30

2.90 ± j3.95

2.95 ± j3.90

ZOL* = Conjugate of the optimum load impedance

 

 

 

100

1.25 ± j2.90

1.85 ± j1.05

 

 

 

150

1.18 ± j1.40

1.72 ± j0.05

ZOL* = into which the device output operates at a

 

 

 

 

 

 

200

1.30 ± j0.90

1.70 + j0.25

ZOL* = given output power, voltage and frequency.

 

 

 

 

 

 

 

Figure 17. Series Equivalent Input/Output Impedance, Zin, ZOL*

MOTOROLA RF DEVICE DATA

MRF174

 

7

DESIGN CONSIDERATIONS

The MRF174 is a RF power N±Channel enhancement mode field±effect transistor (FET) designed especially for UHF power amplifier and oscillator applications. Motorola RF MOSFETs feature a vertical structure with a planar design, thus avoiding the processing difficulties associated with V± groove vertical power FETs.

Motorola Application Note AN211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs.

The major advantages of RF power FETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal, thus facilitating manual gain control, ALC and modulation.

DC BIAS

The MRF174 is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain current flows when a positive voltage is applied to the gate. See Figure 9 for a typical plot of drain current versus gate voltage. RF power FETs require forward bias for optimum performance. The value of quiescent drain current (IDQ) is not critical for many applications. The MRF174 was charac-

terized at IDQ = 100 mA, which is the suggested minimum value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters.

The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may generally be just a simple resistive divider network. Some special applications may require a more elaborate bias system.

GAIN CONTROL

Power output of the MRF174 may be controlled from its rated value down to zero (negative gain) by varying the dc gate voltage. This feature facilitates the design of manual gain control, AGC/ALC and modulation systems. (See Figure 8.)

AMPLIFIER DESIGN

Impedance matching networks similar to those used with bipolar UHF transistors are suitable for MRF174. See Motorola Application Note AN721, Impedance Matching Networks Applied to RF Power Transistors. The higher input impedance of RF MOSFETs helps ease the task of broadband network design. Both small signal scattering parameters and large signal impedances are provided. While the s±parameters will not produce an exact design solution for high power operation, they do yield a good first approximation. This is an additional advantage of RF MOS power FETs.

MRF174

MOTOROLA RF DEVICE DATA

8

 

PACKAGE DIMENSIONS

 

A

 

NOTES:

 

 

 

 

 

U

 

 

 

 

 

 

 

1. DIMENSIONING AND TOLERANCING PER ANSI

 

M

 

 

 

Y14.5M, 1982.

 

 

 

 

 

 

2. CONTROLLING DIMENSION: INCH.

1

M

 

 

INCHES

MILLIMETERS

Q

 

 

4

 

DIM

MIN

MAX

MIN

MAX

 

 

A

0.960

0.990

24.39

25.14

 

 

 

 

R

B

B

0.465

0.510

11.82

12.95

 

C

0.229

0.275

5.82

6.98

 

 

 

D

0.216

0.235

5.49

5.96

 

 

 

E

0.084

0.110

2.14

2.79

2

3

 

H

0.144

0.178

3.66

4.52

 

J

0.003

0.007

0.08

0.17

 

D

 

K

0.435

±±±

11.05

±±±

 

 

M

45

NOM

45

NOM

K

 

 

 

 

Q

0.115

0.130

2.93

3.30

 

 

 

R

0.246

0.255

6.25

6.47

J

 

 

U

0.720

0.730

18.29

18.54

 

 

 

 

 

 

 

H

 

C

STYLE 2:

 

E

PIN 1.

SOURCE

SEATING

 

2.

GATE

 

 

PLANE

3.

SOURCE

 

 

 

4.

DRAIN

CASE 211±11

ISSUE N

MOTOROLA RF DEVICE DATA

MRF174

 

9

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. ªTypicalº parameters can and do vary in different applications. All operating parameters, including ªTypicalsº must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

 

USA / EUROPE: Motorola Literature Distribution;

JAPAN: Nippon Motorola Ltd.; Tatsumi±SPD±JLDC, Toshikatsu Otsuki,

P.O. Box 20912; Phoenix, Arizona 85036. 1±800±441±2447

6F Seibu±Butsuryu±Center, 3±14±2 Tatsumi Koto±Ku, Tokyo 135, Japan. 03±3521±8315

MFAX: RMFAX0@email.sps.mot.com ± TOUCHTONE (602) 244±6609 HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,

INTERNET: http://Design±NET.com

51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852±26629298

MRF174/D

 

MOTOROLA RF DEVICE DATA

 

*MRF174/D*

Соседние файлы в папке СВЧ