Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

motorola / СВЧ / mrf137rev6

.pdf
Источник:
Скачиваний:
2
Добавлен:
06.01.2022
Размер:
201.2 Кб
Скачать

MOTOROLA

SEMICONDUCTOR TECHNICAL DATA

Order this document by MRF137/D

The RF MOSFET Line

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RF Power Field-Effect Transistor

 

 

 

 

 

 

 

 

 

 

 

 

 

N±Channel Enhancement±Mode

 

 

 

 

 

 

MRF137

 

. . . designed for wideband large±signal output and driver stages up to

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

400 MHz range.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Guaranteed 28 Volt, 150 MHz Performance

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output Power = 30 Watts

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Minimum Gain = 13 dB

 

 

 

 

 

 

 

 

30 W, to 400 MHz

 

Efficiency Ð 60% (Typical)

 

 

 

 

 

 

 

 

N±CHANNEL MOS

 

Small±Signal and Large±Signal Characterization

 

 

 

 

 

 

BROADBAND RF POWER

 

 

 

 

 

 

 

 

 

 

FET

 

Typical Performance at 400 MHz, 28 Vdc, 30 W

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output = 7.7 dB Gain

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100% Tested For Load Mismatch At All Phase Angles

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With 30:1 VSWR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Low Noise Figure Ð 1.5 dB (Typ) at 1.0 A, 150 MHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Excellent Thermal Stability, Ideally Suited For Class A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Operation

 

D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Facilitates Manual Gain Control, ALC and Modulation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Techniques

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G

 

 

 

 

 

 

 

CASE 211±07, STYLE 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MAXIMUM RATINGS

 

 

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rating

 

 

 

Symbol

 

 

 

Value

 

Unit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Drain±Source Voltage

 

 

 

VDSS

 

65

 

 

 

 

 

 

Vdc

Drain±Gate Voltage

 

 

 

VDGR

 

65

 

 

 

 

 

 

Vdc

(RGS = 1.0 MΩ)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gate±Source Voltage

 

 

 

VGS

 

± 40

 

 

 

 

 

 

Vdc

Drain Current Ð Continuous

 

 

 

ID

 

5.0

 

 

 

 

 

 

Adc

Total Device Dissipation @ TC = 25°C

 

 

 

PD

 

100

 

 

 

 

 

 

Watts

Derate above 25°C

 

 

 

 

 

 

0.571

 

 

 

 

 

 

W/°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Storage Temperature Range

 

 

 

Tstg

 

± 65 to +150

 

°C

Operating Junction Temperature

 

 

 

TJ

 

200

 

 

 

 

 

 

°C

THERMAL CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Characteristic

 

 

 

Symbol

 

 

 

Max

 

Unit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thermal Resistance, Junction to Case

 

 

 

RθJC

 

1.75

 

 

 

 

 

 

°C/W

Handling and Packaging Ð MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

REV 6

Motorola, Inc. 1994

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted.)

Characteristic

Symbol

Min

Typ

Max

Unit

 

 

 

 

 

 

OFF CHARACTERISTICS

Drain±Source Breakdown Voltage (VGS = 0, ID = 10 mA)

V(BR)DSS

65

 

Ð

Ð

 

Vdc

Zero Gate Voltage Drain Current (VDS = 28 V, VGS = 0)

IDSS

Ð

 

Ð

4.0

 

mAdc

Gate±Source Leakage Current (VGS = 20 V, VDS = 0)

IGSS

Ð

 

Ð

1.0

 

mAdc

ON CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gate Threshold Voltage (VDS = 10 V, ID = 25 mA)

VGS(th)

1.0

 

3.0

6.0

 

Vdc

Forward Transconductance (VDS = 10 V, ID = 500 mA)

gfs

500

 

750

Ð

 

mmhos

DYNAMIC CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz)

Ciss

Ð

 

48

Ð

 

pF

Output Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz)

Coss

Ð

 

54

Ð

 

pF

Reverse Transfer Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz)

Crss

Ð

 

11

Ð

 

pF

FUNCTIONAL CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Noise Figure

 

NF

Ð

 

1.5

Ð

 

dB

(VDS = 28 Vdc, ID = 1.0 A, f = 150 MHz)

 

 

 

 

 

 

 

Common Source Power Gain

 

Gps

 

 

 

 

 

dB

(VDD = 28 Vdc, Pout = 30 W,

f = 150 MHz (Figure 1)

 

13

 

16

Ð

 

 

IDQ = 25 mA)

f = 400 MHz (Figure 14)

 

Ð

 

7.7

Ð

 

 

Drain Efficiency (Figure 1)

 

h

50

 

60

Ð

 

%

(VDD = 28 Vdc, Pout = 30 W, f = 150 MHz, IDQ = 25 mA)

 

 

 

 

 

 

 

Electrical Ruggedness (Figure 1)

 

y

 

 

 

 

 

 

(VDD = 28 Vdc, Pout = 30 W, f = 150 MHz, IDQ = 25 mA,

 

 

No Degradation in Output Power

 

VSWR 30:1 at All Phase Angles)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R4

 

RFC2

 

 

 

 

 

 

C9

C10

+ VDD = 28 V

 

 

 

 

 

 

BIAS

 

 

 

 

 

 

 

 

 

 

 

 

 

ADJUST

D1

 

+

 

 

 

 

R3

C7

C8

 

 

 

 

 

 

 

±

 

 

 

 

R2

 

 

RFC1

 

 

 

 

 

C6

 

 

 

 

 

 

 

 

 

 

 

 

C5

 

C1

 

R1

 

 

 

RF

RF

L1

 

L2

L3

 

OUTPUT

 

 

 

 

 

 

 

INPUT

 

 

 

 

 

 

 

 

 

C2

DUT

 

C3

 

 

 

 

 

 

 

C4

C1

Ð Arco 403, 3.0± 35 pF, or equivalent

L1

Ð 2 Turns, 0.29 ″ ID, #18 AWG Enamel, Closewound

C2

Ð Arco 406, 15± 115 pF, or equivalent

L2

Ð 1±1/4 Turns, 0.2 ″ ID, #18 AWG Enamel, Closewound

C3 Ð 56 pF Mini±Unelco, or equivalent

L3

Ð 2 Turns, 0.2 ″ ID, #18 AWG Enamel, Closewound

C4

Ð Arco 404, 8.0± 60 pF, or equivalent

RFC1 Ð 20 Turns, 0.30 ″ ID, #20 AWG Enamel, Closewound

C5

Ð 680 pF, 100 Mils Chip

RFC2 Ð Ferroxcube VK±200 Ð 19/4B

C6

Ð 0.01 mF, 100 V, Disc Ceramic

R1

Ð 10 k W, 1/2 W Thin Film

C7

Ð 100 mF, 40 V

R2

Ð 10 k W, 1/4 W

C8

Ð 0.1 mF, 50 V, Disc Ceramic

R3

Ð 10 Turns, 10 k W

C9, C10 Ð 680 pF Feedthru

R4

Ð 1.8 k W, 1/2 W

D1 Ð 1N5925A Motorola Zener

Board Ð G10, 62 Mils

 

Figure 1. 150 MHz Test Circuit

 

 

MRF137

MOTOROLA RF DEVICE DATA

2

 

 

50

 

f = 100 MHz

 

 

 

20

 

 

 

 

 

 

 

(WATTS)

40

 

 

 

150 MHz

(WATTS)

 

 

 

 

 

15

 

 

 

 

 

 

 

 

 

200 MHz

 

POWER

30

 

 

 

POWER

 

 

 

 

 

 

 

 

 

 

 

10

,OUTPUT

20

 

 

 

 

,OUTPUT

 

 

 

 

VDD = 28 V

 

5

out

 

 

 

 

out

10

 

 

IDQ = 25 mA

 

 

P

 

 

 

P

 

 

0

0.5

1

1.5

 

2

0

 

0

 

 

 

f = 100 MHz

 

150 MHz

 

 

 

 

200 MHz

 

 

 

 

VDD = 13.5 V

 

 

 

 

IDQ = 25 mA

 

0

1

2

3

4

Pin, INPUT POWER (WATTS)

Pin, INPUT POWER (WATTS)

Figure 2. Output Power versus Input Power

Figure 3. Output Power versus Input Power

 

40

 

 

 

 

 

50

(WATTS)

 

f = 400 MHz

 

 

VDD = 28 V

(WATTS)

 

 

IDQ = 25 mA

 

 

40

 

 

 

 

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

POWER

 

 

 

 

 

POWER

30

20

 

 

 

 

 

,OUTPUT

 

 

 

 

,OUTPUT

 

 

 

 

 

VDD = 13.5 V

20

10

 

 

 

 

 

out

 

 

 

 

out

10

 

 

 

 

 

P

 

 

 

 

 

P

 

0

2

4

6

8

10

0

 

0

 

 

 

 

Pin = 1 W

 

 

 

 

0.5 W

 

 

 

 

0.25 W

 

 

 

 

IDQ = 25 mA

 

 

 

 

f = 100 MHz

 

12

16

20

24

28

Pin, INPUT POWER (WATTS)

VDD, SUPPLY VOLTAGE (VOLTS)

Figure 4. Output Power versus Input Power

Figure 5. Output Power versus Supply Voltage

 

50

 

 

 

 

50

 

 

 

 

(WATTS)

40

 

 

Pin = 1.5 W

(WATTS)

40

 

 

 

 

 

 

 

 

 

Pin = 2 W

 

 

 

 

 

 

 

 

 

POWER

 

 

 

 

POWER

 

 

 

 

30

 

 

0.75 W

30

 

 

1.5 W

 

 

 

 

 

 

 

 

OUTPUT,

 

 

 

 

OUTPUT,

 

 

 

 

20

 

 

0.5 W

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.75 W

 

 

 

 

 

 

 

 

 

 

 

out

10

 

 

 

out

10

 

 

 

 

P

 

 

IDQ = 25 mA

P

 

 

IDQ = 25 mA

 

 

 

 

 

 

 

 

 

 

 

0

 

 

f = 150 MHz

 

0

 

 

f = 200 MHz

 

 

16

20

24

28

16

20

24

28

 

12

12

 

 

VDD, SUPPLY VOLTAGE (VOLTS)

 

 

 

VDD, SUPPLY VOLTAGE (VOLTS)

 

Figure 6. Output Power versus Supply Voltage

Figure 7. Output Power versus Supply Voltage

MOTOROLA RF DEVICE DATA

MRF137

 

3

 

50

 

 

 

 

 

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25

VDD = 28 V

 

 

 

 

 

 

(WATTS)

40

 

 

 

 

(WATTS)

IDQ

= 25 mA

 

 

400 MHz

 

 

 

 

 

Pin = 8 W

 

 

Pin = CONSTANT

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

POWER

 

 

 

 

 

POWER

 

 

 

 

 

 

 

 

30

 

 

5 W

 

 

TYPICAL DEVICE SHOWN,

 

 

 

 

 

 

 

 

 

15

VGS(th) = 3 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

150 MHz

 

, OUTPUT

20

 

 

 

 

, OUTPUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 W

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

out

10

 

 

 

 

out

 

 

 

 

 

 

 

 

 

P

 

 

IDQ = 25 mA

 

P

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

f = 400 MHz

 

 

0

 

 

 

 

 

 

 

 

 

16

20

24

28

 

 

± 6

± 4

± 2

0

1

2

3

 

12

 

± 9 ± 8

 

 

VDD, SUPPLY VOLTAGE (VOLTS)

 

 

 

 

VGS, GATE±SOURCE VOLTAGE (VOLTS)

 

 

 

Figure 8. Output Power versus Supply Voltage

Figure 9. Output Power versus Gate Voltage

ID, DRAIN CURRENT (AMPS)

3

 

 

 

 

 

 

 

(NORMALIZED)

1.02

 

 

 

ID = 1.25 A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TYPICAL DEVICE SHOWN,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

VGS(th) = 3 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

750 mA

 

2

 

 

 

 

 

 

 

VOLTAGE

0.98

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SOURCE-

 

 

 

 

 

 

 

 

1

 

 

 

VDS = 10 V

 

 

0.96

 

 

 

 

 

 

500 mA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GATE,

0.94

 

VDS = 28 V

 

25 mA

 

200 mA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

0.92

 

 

 

 

 

 

 

 

0

1

2

3

4

5

6

7

 

0

25

50

75

100

125

150

175

 

± 25

 

 

VGS, GATE±SOURCE VOLTAGE (VOLTS)

 

 

 

 

 

TC, CASE TEMPERATURE (°C)

 

 

 

Figure 10. Drain Current versus Gate Voltage

Figure 11. Gate Source Voltage versus

(Transfer Characteristics)

Case Temperature

 

200

 

 

 

 

 

 

 

10

 

180

 

 

 

 

 

 

 

5

 

160

 

 

 

 

 

VGS = 0 V

DRAIN CURRENT (AMPS)

 

 

 

 

 

 

 

CAPACITANCE (pF)

140

 

 

 

 

 

f = 1 MHz

 

 

 

 

 

 

 

2

120

 

Coss

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

1

80

 

Ciss

 

 

 

 

0.5

60

 

 

 

 

 

 

 

 

 

 

 

 

 

C,

 

 

C

 

 

 

 

,

 

 

 

 

 

 

 

D

 

 

40

 

rss

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

0

4

8

12

16

20

24

28

0.1

 

0

 

 

 

 

VDS, DRAIN±SOURCE VOLTAGE (VOLTS)

 

 

 

 

 

 

 

TC = 25°C

 

1

2

5

10

20

60

100

VDS, DRAIN±SOURCE VOLTAGE (VOLTS)

Figure 12. Capacitance versus

Figure 13. DC Safe Operating Area

Drain±Source Voltage

 

MRF137

MOTOROLA RF DEVICE DATA

4

 

 

 

 

R4

 

C10

C11

RFC2

 

 

 

 

 

 

 

 

 

VDD = 28 V

 

BIAS

 

 

 

 

 

 

 

 

 

 

 

 

 

C12

C13

 

 

 

ADJUST

R3

D1

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±

 

 

 

 

 

 

 

C9

RFC1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R2

 

 

 

 

 

C8

 

 

 

 

R1

 

 

 

 

 

RF

 

 

 

 

Z4

Z5

Z6

 

 

 

 

 

 

 

OUTPUT

RF

 

 

 

 

 

 

 

 

 

Z1

Z2

Z3

 

 

 

 

 

 

 

INPUT

 

 

 

 

 

 

 

C5

 

 

 

 

 

 

 

 

 

 

 

 

DUT

 

C7

C3

C4

 

 

 

C1

C6

C2

 

 

 

 

 

 

 

 

 

 

 

C1, C2, C3, C4 Ð 0± 20 pF Johanson, or equivalent

R4 Ð 1.8 k W, 1/2 W

C5, C8 Ð 270 pF, 100 Mil Chip

Z1

Ð 2.9 ″ x 0.166″ Microstrip

C6, C7 Ð 24 pF Mini±Unelco, or equivalent

Z2, Z4 Ð 0.35 ″ x 0.166″ Microstrip

C9 Ð 0.01 mF, 100 V, Disc Ceramic

Z3

Ð 0.40 ″ x 0.166″ Microstrip

C10 Ð 100 mF, 40 V

Z5

Ð 1.05 ″ x 0.166″ Microstrip

C11 Ð 0.1 mF, 50 V, Disc Ceramic

Z6

Ð 1.9 ″ x 0.166″ Microstrip

C12, C13 Ð 680 pF Feedthru

RFC1 Ð 6 Turns, 0.300 ″ ID, #20 AWG Enamel, Closewound

D1 Ð 1N5925A Motorola Zener

RFC2 Ð Ferroxcube VK±200 Ð 19/4B

R1, R2 Ð 10 k W, 1/4 W

Board Ð Glass Teflon, 62 Mils

R3 Ð 10 Turns, 10 k W

 

 

Figure 14. 400 MHz Test Circuit

Zin 150

200

 

400

 

400

 

 

200

 

 

 

 

f = 100 MHz

 

ZOL*

 

150

 

 

f = 100 MHz

 

 

VDD = 28 V, IDQ = 25 mA,

 

Pout = 30 W

 

f

Zin{

ZOL*

MHz

Ohms

Ohms

100

2.11

± j11.07

8.02 ± j2.89

150

1.77

± j7.64

5.75 ± j3.02

200

1.85

± j3.75

3.52 ± j2.67

400

1.74

+ j3.62

2.88 ± j1.52

ZOL* = Conjugate of the optimum load impedance into which the device output operates ata given output power, voltage and frequency.

Figure 15. Large±Signal Series Equivalent Input and Output Impedance, Zin, ZOL*

MOTOROLA RF DEVICE DATA

MRF137

 

5

f

 

S11

 

S21

 

S12

 

S22

(MHz)

|S11|

 

± φ

|S21|

 

± φ

|S12|

 

± φ

|S22|

 

± φ

2.0

0.977

 

± 32

59.48

 

163

0.011

 

67

0.661

 

± 36

 

 

 

 

 

 

 

 

 

 

 

 

 

5.0

0.919

 

± 70

48.67

 

142

0.024

 

44

0.692

 

± 78

 

 

 

 

 

 

 

 

 

 

 

 

 

10

0.852

 

± 109

33.50

 

122

0.032

 

29

0.747

 

± 117

 

 

 

 

 

 

 

 

 

 

 

 

 

20

0.817

 

± 140

19.05

 

106

0.037

 

16

0.768

 

± 146

 

 

 

 

 

 

 

 

 

 

 

 

 

30

0.814

 

± 153

13.11

 

99

0.038

 

14

0.774

 

± 157

 

 

 

 

 

 

 

 

 

 

 

 

 

40

0.811

 

± 159

9.88

 

95

0.038

 

13

0.782

 

± 162

 

 

 

 

 

 

 

 

 

 

 

 

 

50

0.812

 

± 164

7.98

 

92

0.038

 

12

0.787

 

± 165

 

 

 

 

 

 

 

 

 

 

 

 

 

60

0.813

 

± 166

6.66

 

89

0.038

 

12

0.787

 

± 168

 

 

 

 

 

 

 

 

 

 

 

 

 

70

0.815

 

± 168

5.708

 

86

0.038

 

11

0.787

 

± 169

 

 

 

 

 

 

 

 

 

 

 

 

 

80

0.816

 

± 170

5.003

 

84

0.038

 

11

0.787

 

± 170

 

 

 

 

 

 

 

 

 

 

 

 

 

90

0.817

 

± 171

4.560

 

83

0.038

 

12

0.787

 

± 171

 

 

 

 

 

 

 

 

 

 

 

 

 

100

0.817

 

± 172

4.170

 

81

0.039

 

13

0.787

 

± 172

 

 

 

 

 

 

 

 

 

 

 

 

 

110

0.818

 

± 173

3.670

 

80

0.039

 

13

0.788

 

± 172

 

 

 

 

 

 

 

 

 

 

 

 

 

120

0.820

 

± 173

3.420

 

79

0.039

 

13

0.788

 

± 173

 

 

 

 

 

 

 

 

 

 

 

 

 

130

0.821

 

± 173

3.170

 

79

0.039

 

13

0.788

 

± 173

 

 

 

 

 

 

 

 

 

 

 

 

 

140

0.822

 

± 174

2.980

 

78

0.039

 

13

0.788

 

± 173

 

 

 

 

 

 

 

 

 

 

 

 

 

150

0.823

 

± 175

2.826

 

77

0.039

 

14

0.788

 

± 173

 

 

 

 

 

 

 

 

 

 

 

 

 

160

0.824

 

± 175

2.650

 

76

0.039

 

14

0.790

 

± 174

 

 

 

 

 

 

 

 

 

 

 

 

 

170

0.825

 

± 176

2.438

 

75

0.039

 

14

0.792

 

± 174

 

 

 

 

 

 

 

 

 

 

 

 

 

180

0.827

 

± 176

2.325

 

73

0.039

 

15

0.793

 

± 174

 

 

 

 

 

 

 

 

 

 

 

 

 

190

0.829

 

± 177

2.175

 

72

0.039

 

16

0.796

 

± 174

 

 

 

 

 

 

 

 

 

 

 

 

 

200

0.831

 

± 177

2.084

 

71

0.039

 

16

0.799

 

± 174

 

 

 

 

 

 

 

 

 

 

 

 

 

225

0.836

 

± 178

1.824

 

69

0.039

 

18

0.805

 

± 174

 

 

 

 

 

 

 

 

 

 

 

 

 

250

0.846

 

± 178

1.621

 

66

0.039

 

21

0.816

 

± 174

 

 

 

 

 

 

 

 

 

 

 

 

 

275

0.853

 

± 179

1.462

 

64

0.039

 

23

0.822

 

± 174

 

 

 

 

 

 

 

 

 

 

 

 

 

300

0.853

 

± 179

1.319

 

61

0.040

 

25

0.833

 

± 174

 

 

 

 

 

 

 

 

 

 

 

 

 

325

0.856

 

± 179

1.194

 

59

0.040

 

27

0.828

 

± 174

 

 

 

 

 

 

 

 

 

 

 

 

 

350

0.857

 

+ 179

1.089

 

56

0.040

 

30

0.842

 

± 174

 

 

 

 

 

 

 

 

 

 

 

 

 

375

0.861

 

+ 179

1.014

 

54

0.042

 

32

0.849

 

± 174

 

 

 

 

 

 

 

 

 

 

 

 

 

400

0.865

 

+ 178

0.927

 

51

0.043

 

35

0.856

 

± 174

 

 

 

 

 

 

 

 

 

 

 

 

 

425

0.875

 

+ 178

0.876

 

49

0.045

 

37

0.866

 

± 174

 

 

 

 

 

 

 

 

 

 

 

 

 

450

0.881

 

+ 178

0.810

 

46

0.046

 

40

0.870

 

± 174

 

 

 

 

 

 

 

 

 

 

 

 

 

475

0.886

 

+ 177

0.755

 

44

0.046

 

43

0.875

 

± 174

 

 

 

 

 

 

 

 

 

 

 

 

 

500

0.887

 

+ 177

0.694

 

41

0.051

 

43

0.888

 

± 174

 

 

 

 

 

 

 

 

 

 

 

 

 

525

0.888

 

+ 176

0.677

 

39

0.052

 

43

0.890

 

± 174

 

 

 

 

 

 

 

 

 

 

 

 

 

550

0.896

 

+ 176

0.625

 

36

0.055

 

45

0.898

 

± 174

 

 

 

 

 

 

 

 

 

 

 

 

 

575

0.907

 

+ 175

0.603

 

34

0.058

 

45

0.913

 

± 174

 

 

 

 

 

 

 

 

 

 

 

 

 

600

0.910

 

+ 175

0.585

 

32

0.061

 

45

0.918

 

± 174

 

 

 

 

 

 

 

 

 

 

 

 

 

625

0.910

 

+ 174

0.563

 

30

0.065

 

45

0.945

 

± 174

 

 

 

 

 

 

 

 

 

 

 

 

 

650

0.920

 

+ 174

0.543

 

28

0.069

 

46

0.952

 

± 174

 

 

 

 

 

 

 

 

 

 

 

 

 

675

0.938

 

+ 173

0.533

 

26

0.074

 

47

0.974

 

± 174

 

 

 

 

 

 

 

 

 

 

 

 

 

700

0.943

 

+ 171

0.515

 

24

0.078

 

47

0.958

 

± 176

 

 

 

 

 

 

 

 

 

 

 

 

 

725

0.934

 

+ 170

0.491

 

22

0.079

 

46

0.953

 

± 177

 

 

 

 

 

 

 

 

 

 

 

 

 

750

0.940

 

+ 170

0.475

 

22

0.084

 

48

0.943

 

± 177

 

 

 

 

 

 

 

 

 

 

 

 

 

775

0.953

 

+ 169

0.477

 

21

0.090

 

48

0.957

 

± 177

 

 

 

 

 

 

 

 

 

 

 

 

 

800

0.959

 

+ 168

0.467

 

17

0.093

 

48

0.957

 

± 179

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Common Source Scattering Parameters

50 Ω System

VDS = 28 V, ID = 0.75 A

MRF137

MOTOROLA RF DEVICE DATA

6

 

 

 

 

+ j50

 

 

 

 

 

+ j25

 

 

 

 

+ j100

 

 

 

 

 

 

 

+ j150

+ j10

 

 

 

 

 

 

+ j250

 

 

 

 

 

 

 

 

800

 

 

 

 

 

+ j500

 

400

25

50

100

150

250

500

0

10

150

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f = 50 MHz

 

 

 

 

 

± j500

± j10

 

 

 

 

 

 

± j250

 

 

 

 

 

 

 

 

 

 

S11

 

 

 

± j150

 

± j25

 

 

 

 

± j100

± j50

Figure 16. S11, Input Reflection Coefficient

versus Frequency

 

 

 

VDS = 28 V

ID = 0.75 A

 

 

 

 

 

+ 90°

 

 

 

+120°

 

+ 60°

 

 

 

 

 

 

f = 50 MHz

 

+150°

 

 

 

 

 

+ 30°

 

 

 

 

 

150

 

 

 

 

 

 

400

 

180°10

8

6

4

2

800

0°

±150°

 

 

S21

 

 

± 30°

 

 

 

 

 

 

 

 

 

 

 

 

 

±120°

 

± 60°

 

 

 

 

 

 

 

 

 

 

± 90°

 

Figure 18. S21, Forward Transmission Coefficient versus Frequency

VDS = 28 V ID = 0.75 A

 

 

 

 

 

+ 90°

 

 

+120°

 

 

+ 60°

 

 

 

 

 

800

+150°

 

 

 

 

+ 30°

 

 

 

 

 

600

 

 

 

 

 

400

180°0.1

 

 

 

 

f = 50 MHz

.08

.06

.04

.02

0°

±150°

 

 

S12

 

± 30°

 

 

 

 

 

 

 

 

 

 

 

±120°

 

± 60°

 

 

 

 

 

 

 

 

 

± 90°

Figure 17. S12, Reverse Transmission Coefficient versus Frequency

VDS = 28 V ID = 0.75 A

 

 

 

+ j50

 

 

 

 

 

 

+ j25

 

 

 

+ j100

 

 

 

 

 

 

 

+ j150

+ j10

 

 

 

 

 

+ j250

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ j500

0

800

25

50

100

150

250

500

 

400

150

 

 

 

 

 

 

 

f = 50 MHz

 

 

 

 

± j500

± j10

 

 

 

 

 

± j250

 

 

 

 

 

 

 

 

 

S22

 

 

 

± j150

 

 

± j25

 

 

 

± j100

± j50

Figure 19. S22, Output Reflection Coefficient versus Frequency

VDS = 28 V ID = 0.75 A

MOTOROLA RF DEVICE DATA

MRF137

 

7

DESIGN CONSIDERATIONS

The MRF137 is a RF power N±Channel enhancement mode field±effect transistor (FET) designed especially for VHF power amplifier applications. Motorola RF MOS FETs feature a vertical structure with a planar design, thus avoiding the processing difficulties associated with V±groove vertical power FETs.

Motorola Application Note AN211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs.

The major advantages of RF power FETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal, thus facilitating manual gain control, ALC and modulation.

DC BIAS

The MRF137 is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain current flows when a positive voltage is applied to the gate. See Figure 10 for a typical plot of drain current versus gate voltage. RF power FETs require forward bias for optimum performance. The value of quiescent drain current (IDQ) is not critical for many applications. The MRF137 was characterized at IDQ = 25 mA, which is the suggested minimum value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters.

The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may generally be just a simple

resistive divider network. Some special applications may require a more elaborate bias system.

GAIN CONTROL

Power output of the MRF137 may be controlled from its rated value down to zero (negative gain) by varying the dc gate voltage. This feature facilitates the design of manual gain control, AGC/ALC and modulation systems. (See Figure 9.)

AMPLIFIER DESIGN

Impedance matching networks similar to those used with bipolar VHF transistors are suitable for MRF137. See Motorola Application Note AN721, Impedance Matching Networks Applied to RF Power Transistors. The higher input impedance of RF MOS FETs helps ease the task of broadband network design. Both small signal scattering parameters and large signal impedances are provided. While the s±parameters will not produce an exact design solution for high power operation, they do yield a good first approximation. This is an additional advantage of RF MOS power FETs.

RF power FETs are triode devices and, therefore, not unilateral. This, coupled with the very high gain of the MRF137, yields a device capable of self oscillation. Stability may be achieved by techniques such as drain loading, input shunt resistive loading, or output to input feedback. Two port parameter stability analysis with the MRF137 s±parameters provides a useful tool for selection of loading or feedback circuitry to assure stable operation. See Motorola Application Note AN215A for a discussion of two port network theory and stability.

MRF137

MOTOROLA RF DEVICE DATA

8

 

PACKAGE DIMENSIONS

Q

1

2

S K

A

 

 

 

 

 

 

U

 

NOTES:

 

 

 

 

M

 

1. DIMENSIONING AND TOLERANCING PER ANSI

 

Y14.5M, 1982.

 

 

 

M

 

2. CONTROLLING DIMENSION: INCH.

 

 

 

INCHES

MILLIMETERS

 

 

 

4

 

DIM

MIN

MAX

MIN

MAX

 

A

0.960

0.990

24.39

25.14

 

B

R

B

0.370

0.390

9.40

9.90

 

 

C

0.229

0.281

5.82

7.13

 

 

D

0.215

0.235

5.47

5.96

3

 

E

0.085

0.105

2.16

2.66

 

H

0.150

0.108

3.81

4.57

 

 

D

 

J

0.004

0.006

0.11

0.15

 

K

0.395

0.405

10.04

10.28

 

 

M

40

50

40

50

 

 

Q

0.113

0.130

2.88

3.30

 

 

R

0.245

0.255

6.23

6.47

 

 

S

0.790

0.810

20.07

20.57

 

 

U

0.720

0.730

18.29

18.54

 

 

STYLE 2:

 

 

J

PIN 1.

SOURCE

 

 

2.

GATE

 

C

3.

SOURCE

H

4.

DRAIN

E

SEATING

 

 

 

PLANE

 

CASE 211±07

ISSUE N

MOTOROLA RF DEVICE DATA

MRF137

 

9

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. ªTypicalº parameters can and do vary in different applications. All operating parameters, including ªTypicalsº must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England. JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

MRF137/D

 

*MRF137/D*

Соседние файлы в папке СВЧ