Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

motorola / СВЧ / mrf157rev1

.pdf
Источник:
Скачиваний:
2
Добавлен:
06.01.2022
Размер:
183.12 Кб
Скачать

MOTOROLA

SEMICONDUCTOR TECHNICAL DATA

Order this document by MRF157/D

The RF Power MOS Line

 

Power Field Effect

Transistor

N±Channel Enhancement Mode

MRF157

Designed primarily for linear large±signal output stages to 80 MHz.

Specified 50 Volts, 30 MHz Characteristics Output Power = 600 Watts

Power Gain = 21 dB (Typ)

Efficiency = 45% (Typ)

600 W, to 80 MHz MOS LINEAR RF POWER FET

D

G

S

CASE 368±03, STYLE 2

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

 

 

 

 

Drain±Source Voltage

VDSS

125

Vdc

Drain±Gate Voltage

VDGO

125

Vdc

Gate±Source Voltage

VGS

± 40

Vdc

Drain Current Ð Continuous

ID

60

Adc

Total Device Dissipation @ TC = 25°C

PD

1350

Watts

Derate above 25°C

 

7.7

W/°C

 

 

 

 

Storage Temperature Range

Tstg

± 65 to +150

°C

Operating Junction Temperature

TJ

200

°C

THERMAL CHARACTERISTICS

 

 

 

 

 

 

 

Characteristic

Symbol

Max

Unit

 

 

 

 

Thermal Resistance, Junction to Case

RθJC

0.13

°C/W

NOTE Ð CAUTION Ð MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

REV 1

Motorola, Inc. 1995

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)

Characteristic

Symbol

Min

Typ

Max

Unit

 

 

 

 

 

 

OFF CHARACTERISTICS

Drain±Source Breakdown Voltage (VGS = 0, ID = 100 mA)

V(BR)DSS

125

Ð

Ð

Vdc

Zero Gate Voltage Drain Current (VDS = 50 V, VGS = 0)

IDSS

Ð

Ð

20

mAdc

Gate±Body Leakage Current (VGS = 20 V, VDS = 0)

IGSS

Ð

Ð

5.0

mAdc

ON CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

Gate Threshold Voltage (VDS = 10 V, ID = 100 mA)

VGS(th)

1.0

3.0

5.0

Vdc

Drain±Source On±Voltage (VGS = 10 V, ID = 40 A)

VDS(on)

1.0

3.0

5.0

Vdc

Forward Transconductance (VDS = 10 V, ID = 20 A)

gfs

16

24

Ð

mhos

DYNAMIC CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

Input Capacitance

Ciss

Ð

1800

Ð

pF

(VDS = 50 V, VGS = 0 V, f = 1.0 MHz)

 

 

 

 

 

Output Capacitance

Coss

Ð

750

Ð

pF

(VDS = 50 V, VGS = 0, f = 1.0 MHz)

 

 

 

 

 

Reverse Transfer Capacitance

Crss

Ð

75

Ð

pF

(VDS = 50 V, VGS = 0, f = 1.0 MHz)

 

 

 

 

 

FUNCTIONAL TESTS

 

 

 

 

 

 

 

 

 

 

 

Common Source Amplifier Power Gain

Gps

15

21

Ð

dB

(VDD = 50 V, Pout = 600 W, IDQ = 800 mA, f = 30 MHz)

 

 

 

 

 

Drain Efficiency

h

40

45

Ð

%

(VDD = 50 V, Pout = 600 W, f = 30 MHz, IDQ = 800 mA)

 

 

 

 

 

Intermodulation Distortion

IMD(d3)

Ð

± 25

Ð

dB

(VDD = 50 V, Pout = 600 W(PEP), f1 = 30 MHz,

 

 

 

 

 

f2 = 30.001 MHz, IDQ = 800 mA)

 

 

 

 

 

+

 

 

 

 

 

 

C20 C21

+

 

 

 

 

 

 

+

0±6 V

R1

 

 

 

 

 

50 V

C5

C6

 

 

L2

L3

±

 

 

 

 

 

 

 

C15 C16

C17 C18

 

±

 

 

 

D.U.T.

C14

 

C19

 

 

 

C4

R2

 

 

 

 

 

 

 

 

 

 

RF

 

L1

C7

 

C10 C11 C12

C13

 

 

 

 

 

 

 

 

INPUT

C1

C3

 

C9

 

 

 

 

 

C2

 

 

 

 

 

RF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T1

 

OUTPUT

C1, C3, C8 Ð Arco 469

 

 

 

 

C8

 

 

 

 

 

 

 

 

 

C2 Ð 330 pF

 

 

 

 

 

 

 

 

C4 Ð 680 pF

 

 

 

 

 

 

 

 

C5, C19, C20 Ð 0.47

mF, RMC Type 2225C

 

 

 

 

 

C6, C7, C14, C15, C16 Ð 0.1

mF

 

 

 

 

 

 

C9, C10, C11 Ð 470 pF

 

 

 

 

 

 

 

C12 Ð 1000 pF

 

 

 

 

R1, R2 Ð 10 Ohms/2W Carbon

 

C13 Ð T wo Unencapsulated 1000 pF Mica, in Series

 

 

C17, C18 Ð 0.039 mF

 

 

 

 

T1 Ð RF Transformer , 1:25 Impedance Ratio. See Motorola

C21 Ð 10 mF/100 V Electrolytic

 

 

T1 Ð Application Note AN749, Figure 4 for details.

L1 Ð 2 Turns #16 AWG, 1/2 ″

ID, 3/8″ Long

 

 

T1 Ð Ferrite Material: 2 Each, Fair±Rite Products

L2, L3 Ð Ferrite Beads, Fair±Rite Products Corp. #2673000801

T1 Ð

Corp. #2667540001

 

All capacitors ATC type 100/200 chips or equivalent unless otherwise noted.

Figure 1. 30 MHz Test Circuit

MRF157

MOTOROLA RF DEVICE DATA

2

 

 

30

 

 

 

 

 

 

800

 

25

 

 

 

 

 

POWER (WATTS)

600

 

 

 

 

 

 

400

 

 

 

 

 

 

 

GAIN (dB)

20

 

 

 

 

 

200

 

 

 

 

 

0

 

 

 

 

 

 

15

 

 

 

 

 

 

POWER

 

VDD = 50 V

 

 

 

 

, OUTPUT

800

10

 

 

 

 

600

IDQ = 800 mA

 

 

 

 

 

 

 

 

 

 

 

Pout = 600 W

 

 

 

 

out

400

 

5

 

 

 

 

 

P

 

 

 

 

 

 

 

200

 

 

 

 

 

 

 

 

 

0

2

5

10

20

50

100

0

 

1

 

f, FREQUENCY (MHz)

 

 

VDS = 50 V

 

 

 

 

 

40 V

MHz

 

 

 

 

30

0

4

8

12

16

 

IDQ = 800 mA

 

 

 

VDS = 50 V

 

 

 

 

40 V

MHz

 

 

80

 

 

 

0

40

 

80

 

Pin, INPUT POWER (WATTS)

 

 

Figure 2. Power Gain versus Frequency

Figure 3. Output Power versus Input Power

 

100

 

 

5000

 

 

 

 

 

 

(AMPS)

 

TC = 25°C

 

2000

 

 

 

Ciss

 

 

 

 

 

 

 

 

 

 

 

 

(pF)

1000

 

 

 

Coss

 

 

DRAINCURRENT

 

 

CAPACITANCEC,

 

 

 

 

 

 

10

 

200

 

 

 

 

 

 

 

 

 

500

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

D

 

 

 

 

V

= 0 V

 

Crss

 

 

I

 

 

 

 

GS

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

f = 1 MHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

20

200

50

2

5

10

20

50

100

 

2

1

 

V

, DRAIN±SOURCE VOLTAGE (VOLTS)

 

 

 

VDS, DRAIN±SOURCE VOLTAGE (VOLTS)

 

 

 

 

DS

 

 

 

 

 

 

 

 

Figure 4. DC Safe Operating Area

Figure 5. Capacitance versus Drain Voltage

IDS, DRAIN CURRENT (AMPS)

40

30

20

10

0

0

TYPICAL DEVICE SHOWN

VDS = 10 V

VGS(th) = 3.5 V

gfs = 24 mhos

2

4

6

VGS, GATE±SOURCE VOLTAGE (VOLTS)

(NORMALIZED)

1

 

 

 

 

16 A

 

1.04

 

 

 

 

 

 

1.03

 

 

 

ID = 20 A

 

 

1.02

 

 

 

 

 

 

 

 

 

 

VOLTAGE

1.01

 

 

 

 

 

0.99

 

 

 

 

 

 

 

 

 

 

 

 

0.98

 

 

 

 

 

GATE±SOURCE

0.97

 

 

 

 

8 A

0.96

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.95

 

 

 

 

4 A

 

0.94

 

 

 

 

 

0.93

 

 

 

 

 

,

0.92

 

 

 

 

 

GS

0.91

 

 

 

0.4 A

1 A

V

0.9

 

 

 

 

 

8

0

25

50

75

100

±25

 

 

 

TC, CASE TEMPERATURE (°C)

 

Figure 6. Gate Voltage versus Drain Current

Figure 7. Gate±Source Voltage versus

 

Case Temperature

MOTOROLA RF DEVICE DATA

MRF157

 

3

OUTPUTPOWER, (kW)

4

 

 

 

 

 

 

RESISTANCE(NORMALIZED)

0.05

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

VDD = 60 V

 

 

 

 

 

 

 

D = 0.5

 

 

 

 

 

 

 

 

IDQ = 2 x 800 mA

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

 

3

f = 30 MHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t1

= 1 ms (See Fig. 9)

 

 

 

 

 

0.2

 

0.2

 

R

(t) = r(t) R

 

 

 

 

t = 10 ms (See Fig. 9)

 

 

 

 

 

 

 

 

θJC

° θJC

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

RθJC = 0.13

C/W MAX

 

 

 

 

 

 

 

 

 

 

 

 

0.1

 

D CURVES APPLY FOR POWER

 

 

2

 

 

 

 

 

 

 

0.1

 

 

PULSE TRAIN SHOWN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TRANSIENTTHERMAL

 

 

 

READ TIME AT t1

 

 

P

0

0

20

40

60

80

100

0.01

±2

±1

 

3

4

 

 

2

 

 

 

 

 

 

 

 

 

 

 

0.05

 

TJ(pk) ± TC = P(pk)

RθJC(t)

 

out

1

 

 

 

 

 

 

 

 

 

0.02

 

 

P(pk)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t1

 

 

 

 

 

 

 

 

 

 

 

0.02

 

 

 

 

 

t2

 

 

 

 

 

 

 

 

 

 

 

 

 

SINGLE PULSE

 

 

DUTY CYCLE, D = t1/t2

 

 

 

 

 

 

 

 

 

r(t),

10

 

10

1

10

10

 

10

10

 

 

 

Pin, POWER INPUT (WATTS)

 

 

 

 

 

 

PULSE WIDTH, t (ms)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Output Power versus Input Power

Figure 9. Thermal Response versus

Under Pulse Conditions (2 x MRF157)

Pulse Width

Note: Pulse data for this graph was taken in a push±pull circuit similar

Note: to the one shown. However, the output matching network was

Note: modified for the higher level of peak power.

f = 100 MHz

60

30

15

Zin

7.5

4.0

2.0

Zo = 10 Ω

VDD = 50 V IDQ = 800 mA Pout = 600 W

(VCC ± Vsat)2

Note: To determine ZOL*, use formula

 

= ZOL*

2 Po

Figure 10. Series Equivalent Impedance

MRF157

MOTOROLA RF DEVICE DATA

4

 

 

 

 

 

 

 

 

 

C13

+

 

 

 

 

 

 

 

 

50 V

 

 

 

 

 

 

 

 

 

±

 

 

 

D2

R10

 

 

D.U.T.

L3

 

 

 

R1

 

 

 

OUTPUT

 

 

 

 

 

 

 

 

 

 

 

 

C3

R12

C7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R14

 

 

 

 

22 pF

 

 

L1

 

C10

 

 

 

 

C9

 

C14

 

 

 

 

 

 

 

 

 

 

 

 

T1

 

 

L2

 

C11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L2

 

R15

C12

 

 

 

 

 

 

 

 

 

±

 

 

D3

R11

 

C8

 

 

 

BIAS 36±50 V

 

R2

 

 

 

T2

 

+

 

 

 

 

 

 

 

R5

 

 

 

 

D.U.T.

 

 

 

 

 

C4

R13

 

 

 

R4

 

 

 

 

 

 

 

 

R6

 

 

 

 

 

 

 

10

2

 

C1 Ð 1000 pF Ceramic Disc Capacitor

L3 Ð 10 μH, 10 Turns #12 AWG Enameled Wire on

3

 

12

 

4

 

C2, C3, C4 Ð 0.1 μF Ceramic Disc Capacitor

L3 Ð Fair±Rite Products Corp. Ferrite Toroid #5961000401 or Equivalent

11

 

6 5

R7

C5 Ð 0.01 μF Ceramic Chip Capacitor

R1 , R2 Ð 1.0K Single Turn Trimpots

13

7

 

C6, C12 Ð 0.1 μF Ceramic Chip Capacitor

R3 Ð 10K Single Turn Trimpot

D1

C1 R3

 

 

C7, C8 Ð Two 2200 pF Ceramic Chip Capacitors in Parallel

R4 Ð 470 Ohms, 2.0 Watts

 

R8

C7, C8 Ð Each

 

 

R5 Ð 10 Ohms

 

 

 

C9 Ð 820 pF Ceramic Chip Capacitor

R6, R12, R13 Ð 2.0K Ohms

 

 

 

 

 

 

 

 

C10, C11 Ð 1000 pF Ceramic Chip Capacitor

R7 Ð 10K Ohms

 

 

 

 

C13 Ð 0.47 μF Ceramic Chip Capacitor or Two Smaller

R8 Ð Exact Value Depends on Thermistor R9 used

 

C2

 

R9

C13 Ð Values in Parallel

 

R8 Ð (Typically 5.0 ± 10K)

 

 

 

 

C14 Ð Unencapsulated Mica, 500 V. Two 1000 pF Units

R9 Ð Thermistor, Keystone RL1009±5820±97±D1 or

 

 

 

 

C14 Ð in Series, Mounted Under T2

 

R9 Ð Equivalent

 

 

 

 

D1 Ð 1N5357A or Equivalent

 

R10, R11 Ð 100 Ohms, 1.0W Carbon

 

 

 

 

D2, D3 Ð 1N4148 or Equivalent.

 

R14, R15 Ð EMC Technology Model 5308 or KDI

 

 

 

 

IC1 Ð MC1723 (723) Voltage Regulator

R14, R15 Ð Pyrofilm PPR 870±150±3 Power Resistors,

 

 

 

 

L1, L2 Ð 15 ηH, Connecting Wires to R14 and R15,

R14, R15 Ð 25 Ohms

 

 

 

 

L1, L2 Ð 2.5 cm Each #20 AWG

 

T1, T2 Ð 9:1 and 1:9 Impedance Ratio RF Transformers

Unless otherwise noted, all resistors are 1/2 watt metal film type. All chip capacitors except C13 are ATC type 100/200B or Dielectric Laboratories type C17.

Figure 11. 2.0 to 50 MHz, 1.0 kW Wideband Amplifier

RF POWER MOSFET CONSIDERATIONS

MOSFET CAPACITANCES

The physical structure of a MOSFET results in capacitors between the terminals. The metal oxide gate structure determines the capacitors from gate±to±drain (Cgd), and gate±to± source (Cgs). The PN junction formed during the fabrication of the TMOS FET results in a junction capacitance from drain±to±source (Cds).

These capacitances are characterized as input (Ciss), output (Coss) and reverse transfer (Crss) capacitances on data sheets. The relationships between the interterminal capacitances and those given on data sheets are shown below. The Ciss can be specified in two ways:

1.Drain shorted to source and positive voltage at the gate.

2.Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower. However, neither method represents the actual operating conditions in RF applications.

 

DRAIN

 

 

Cgd

 

GATE

Cds

Ciss = Cgd + Cgs

Coss = Cgd + Cds

 

Cgs

Crss = Cgd

 

 

 

SOURCE

 

LINEARITY AND GAIN CHARACTERISTICS

In addition to the typical IMD and power gain data presented, Figure 5 may give the designer additional information on the capabilities of this device. The graph represents the small signal unity current gain frequency at a given drain current level. This is equivalent to fT for bipolar transistors. Since this test is performed at a fast sweep speed, heating of the device does not occur. Thus, in normal use, the higher temperatures may degrade these characteristics to some extent.

DRAIN CHARACTERISTICS

One figure of merit for a FET is its static resistance in the full±on condition. This on±resistance, VDS(on), occurs in the linear region of the output characteristic and is specified under specific test conditions for gate±source voltage and drain current. For MOSFETs, VDS(on) has a positive temperature coefficient and constitutes an important design consideration at high temperatures, because it contributes to the power dissipation within the device.

GATE CHARACTERISTICS

The gate of the TMOS FET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high Ð on the order of 10 9 ohms Ð resulting in a leakage current of a few nanoamperes.

Gate control is achieved by applying a positive voltage slightly in excess of the gate±to±source threshold voltage, VGS(th).

MOTOROLA RF DEVICE DATA

MRF157

 

5

for a push±pull design can be used to
a single

Gate Voltage Rating Ð Never exceed the gate voltage rating. Exceeding the rated VGS can result in permanent damage to the oxide layer in the gate region.

Gate Termination Ð The gates of these devices are essentially capacitors. Circuits that leave the gate open±circuited or floating should be avoided. These conditions can result in turn±on of the devices due to voltage build±up on the input capacitor due to leakage currents or pickup.

Gate Protection Ð These devices do not have an internal monolithic zener diode from gate±to±source. The addition of an internal zener diode may result in detrimental effects on the reliability of a power MOSFET. If gate protection is required, an external zener diode is recommended.

IMPEDANCE CHARACTERISTICS

Device input and output impedances are normally obtained by measuring their conjugates in an optimized narrow band test circuit. These test circuits are designed and constructed for a number of frequency points depending on the frequency coverage of characterization. For low frequencies the circuits consist of standard LC matching networks including variable capacitors for peak tuning. At increasing power levels the output impedance decreases, resulting in higher RF currents in the matching network. This makes the practicality of output impedance measurements in the manner described questionable at power levels higher than 200±300 W for devices operated at 50 V and 150±200 W for devices operated at 28 V. The physical sizes and values required for the components to withstand the RF currents increase to a point where physical construction of the output matching network gets difficult if not impossible. For this reason the output impedances are not given for high power devices such as the MRF154 and MRF157. However, formulas

like (VDS ± Vsat)2 for ended design 2Pout

or 2((VDS ± Vsat)2)

Pout

obtain reasonably close approximations to actual values.

MOUNTING OF HIGH POWER RF POWER TRANSISTORS

The package of this device is designed for conduction cooling. It is extremely important to minimize the thermal resistance between the device flange and the heat dissipator.

If a copper heatsink is not used, a copper head spreader is strongly recommended between the device mounting surfaces and the main heatsink. It should be at least 1/4″ thick and extend at least one inch from the flange edges. A thin layer of thermal compound in all interfaces is, of course, essential. The recommended torque on the 4 ± 40 mounting screws should be in the area of 4±5 lbs.±inch, and spring type lock washers along with flat washers are recommended.

For die temperature calculations, the D temperature from a corner mounting screw area to the bottom center of the flange is approximately 5°C and 10°C under normal operating conditions (dissipation 150 W and 300 W respectively).

The main heat dissipator must be sufficiently large and have low Rq for moderate air velocity, unless liquid cooling is employed.

CIRCUIT CONSIDERATIONS

At high power levels (500 W and up), the circuit layout becomes critical due to the low impedance levels and high RF currents associated with the output matching. Some of the components, such as capacitors and inductors must also withstand these currents. The component losses are directly proportional to the operating frequency. The manufacturers specifications on capacitor ratings should be consulted on these aspects prior to design.

Push±pull circuits are less critical in general, since the ground referenced RF loops are practically eliminated, and the impedance levels are higher for a given power output. High power broadband transformers are also easier to design than comparable LC matching networks.

EQUIVALENT TRANSISTOR PARAMETER TERMINOLOGY

 

Collector . . . . . . . . . . . . . . . . .

Drain

 

 

Emitter . . . . . . . . . . . . . . . . .

Source

 

 

Base . . . . . . . . . . . . . . . . .

Gate

V(BR)CES . . . . . . . . . . . . . . . . .

V(BR)DSS

 

 

VCBO . . . . . . . . . . . . . . . . .

VDGO

 

 

IC . . . . . . . . . . . . . . . . .

ID

 

 

ICES . . . . . . . . . . . . . . . . .

IDSS

 

 

IEBO . . . . . . . . . . . . . . . . .

IGSS

 

 

VBE(on) . . . . . . . . . . . . . . . . .

VGS(th)

 

VCE(sat) . . . . . . . . . . . . . . . . .

VDS(on)

 

 

Cib . . . . . . . . . . . . . . . . .

Ciss

 

 

Cob . . . . . . . . . . . . . . . . .

Coss

 

 

hfe . . . . . . . . . . . . . . . . .

gfs

RCE(sat) =

 

VCE(sat) . . . . . . . . . . . . . . . . . .

RDS(on) =

 

IC

 

 

 

 

VDS(on)

ID

MRF157

MOTOROLA RF DEVICE DATA

6

 

PACKAGE DIMENSIONS

 

±A±

 

 

 

 

 

 

NOTES:

 

 

 

 

 

U

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. DIMENSIONING AND TOLERANCING PER ANSI

 

1

 

 

 

 

 

 

Y14.5M, 1982.

 

 

 

 

K

 

 

 

 

 

2. CONTROLLING DIMENSION: INCH.

 

 

 

 

 

 

 

 

 

INCHES

MILLIMETERS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DIM

MIN

MAX

MIN

MAX

 

 

 

 

 

 

 

 

A

1.490

1.510

37.85

38.35

±B±

V

N

 

 

 

 

 

B

0.990

1.010

25.15

25.65

 

 

 

 

 

C

0.330

0.365

8.38

9.27

 

3

 

 

 

 

 

 

D

0.490

0.510

12.45

12.95

 

 

 

 

 

 

 

 

E

0.195

0.205

4.95

5.21

 

 

 

 

 

 

 

 

H

0.045

0.055

1.14

1.39

 

 

Q 4 PL

 

 

 

 

 

J

0.004

0.006

0.10

0.15

 

2

 

 

 

 

 

K

0.425

0.500

10.80

12.70

 

 

0.25 (0.010) M

T

A

M

B

M

N

0.890

0.910

22.87

23.11

 

D

Q

0.120

0.130

3.05

3.30

 

 

 

 

 

 

 

U

1.250 BSC

31.75 BSC

 

N

H

 

 

 

 

 

V

0.750 BSC

19.05 BSC

 

 

 

 

 

 

 

STYLE 2:

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

PIN 1. DRAIN

 

E

 

 

 

 

 

 

 

 

2. GATE

 

±T±

J

 

 

 

 

 

 

 

3. SOURCE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SEATING

 

 

 

 

 

 

 

 

 

 

 

 

PLANE

 

 

 

 

 

 

 

 

 

 

 

 

CASE 368±03

ISSUE C

MOTOROLA RF DEVICE DATA

MRF157

 

7

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. ªTypicalº parameters can and do vary in different applications. All operating parameters, including ªTypicalsº must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

 

USA / EUROPE: Motorola Literature Distribution;

JAPAN: Nippon Motorola Ltd.; Tatsumi±SPD±JLDC, Toshikatsu Otsuki,

P.O. Box 20912; Phoenix, Arizona 85036. 1±800±441±2447

6F Seibu±Butsuryu±Center, 3±14±2 Tatsumi Koto±Ku, Tokyo 135, Japan. 03±3521±8315

MFAX: RMFAX0@email.sps.mot.com ± TOUCHTONE (602) 244±6609 HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,

INTERNET: http://Design±NET.com

51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852±26629298

MRF157/D

 

*MRF157/D*

Соседние файлы в папке СВЧ