Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

motorola / Rectifs / tvs2

.pdf
Источник:
Скачиваний:
1
Добавлен:
06.01.2022
Размер:
278.62 Кб
Скачать

MOTOROLA

SEMICONDUCTOR

TECHNICAL DATA

SOT%23 Dual Monolithic

Common Anode Zener

Transient Voltage Suppressor

For ESD Protection

This dual monolithic silicon zener diode is designed for applications requiring transient overvoltage protection capability. It is intended for use in voltage and ESD sensitive equipment such as computers, printers, business machines, communication systems, medical equipment and other applications. Its dual junction common anode design protects two separate lines using only one package. These devices are ideal for situations where board space is at a premium.

Specification Features:

SOT-23 Package Allows Either Two Separate Unidirectional Configurations or a Single Bidirectional Configuration

Peak Power Ð 24 Watts @ 1.0 ms (Unidirectional), per Figure 5 Waveform

Maximum Clamping Voltage @ Peak Pulse Current

Low Leakage < 5.0 μA

ESD Rating of Class N (exceeding 16 kV) per the Human Body Model

Mechanical Characteristics:

Void Free, Transfer-Molded, Thermosetting Plastic Case

Corrosion Resistant Finish, Easily Solderable

Package Designed for Optimal Automated Board Assembly

Small Package Size for High Density Applications

Available in 8 mm Tape and Reel

Use the Device Number to Order the 7 inch/3,000 Unit Reel

Replace ªT1º with ªT3º in the Device Number to Order the 13 inch/10,000 Unit Reel

WAFER FAB LOCATION: Phoenix, Arizona

ASSEMBLY/TEST LOCATION: Seremban, Malaysia

THERMAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

MMBZ5V6ALT1

ADDITIONAL VOLTAGES AVAILABLE

Motorola Preferred Device

SOT-23 DUAL

ZENER OVERVOLTAGE TRANSIENT SUPPRESSOR 5.6 VOLTS

24 WATTS PEAK POWER

3

1

2

CASE 318-07

STYLE 12

LOW PROFILE SOT-23

PLASTIC

1

3

2

PIN 1. CATHODE

2.CATHODE

3.ANODE

Characteristic

Symbol

Value

Unit

 

 

 

 

Peak Power Dissipation @ 1.0 ms (1)

Ppk

24

Watts

@ TA 25°C

 

 

 

Total Power Dissipation on FR-5 Board (2) @ TA = 25°C

PD

225

mW

Derate above 25°C

 

1.8

mW/°C

 

 

 

 

Thermal Resistance Junction to Ambient

RθJA

556

°C/W

Total Power Dissipation on Alumina Substrate (3) @ TA = 25°C

PD

300

mW

Derate above 25°C

 

2.4

mW/°C

 

 

 

 

Thermal Resistance Junction to Ambient

RθJA

417

°C/W

Junction and Storage Temperature Range

TJ

± 55 to +150

°C

 

Tstg

 

 

Lead Solder Temperature Ð Maximum

TL

260

°C

(10 Second Duration)

 

 

 

 

 

 

 

(1)Non-repetitive current pulse per Figure 5 and derate above TA = 25°C per Figure 6.

(2)FR-5 = 1.0 x 0.75 x 0.62 in.

(3)Alumina = 0.4 x 0.3 x 0.024 in., 99.5% alumina

Thermal Clad is a trademark of the Bergquist Company.

Preferred devices are Motorola recommended choices for future use and best overall value.

Motorola TVS/Zener Device Data

24 Watt Peak Power Data Sheet

 

5-55

MMBZ5V6ALT1

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

UNIDIRECTIONAL (Circuit tied to pins 1 and 3 or Pins 2 and 3) (VF = 0.9 V Max @ IF = 10 mA)

 

Breakdown Voltage

Max Reverse

Max Zener Impedance (6)

Max

Max Reverse

Maximum

 

Leakage Current

Voltage @

 

 

 

 

 

 

 

 

Reverse

 

 

 

 

 

 

 

 

 

 

IRSM(5)

Temperature

 

 

 

 

 

 

 

 

 

 

Surge

 

 

VZT(4)

 

 

 

 

 

 

 

(Clamping

Coefficient of

 

 

 

 

 

 

 

 

 

Current

 

 

(V)

 

@ I ZT

IR @ VR

ZZT @ IZT

ZZK @ IZK

Voltage)

VZ

 

 

 

IRSM(5)

 

 

 

 

 

 

 

Ω

Ω

 

 

 

 

 

 

 

(mA)

(uA)

(V)

( ) (mA)

( )

(mA)

 

 

°

Min

 

Nom

Max

 

 

 

 

 

 

(A)

VRSM

(mV/ C)

 

 

 

 

 

 

 

(V)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.32

 

5.6(7)

5.88

20

5.0

3.0

11

1600

0.25

3.0

8.0

1.26

(4)VZ measured at pulse test current IT at an ambient temperature of 25°C.

(5)Surge current waveform per Figure 5 and derate per Figure 6.

(6)ZZT and ZZK are measured by dividing the AC voltage drop across the device by the AC current supplied. The specfied limits are IZ(AC) = 0.1 IZ(DC), with AC frequency = 1 kHz.

(7)Other voltages may be available upon request. Please contact your Motorola representative.

.

TYPICAL CHARACTERISTICS

 

8

VZ @ IT

 

 

 

(VOLTS)

 

 

 

 

7

 

 

 

 

VOLTAGE

 

BIDIRECTIONAL

 

 

 

 

 

 

6

 

 

 

 

BREAKDOWN

 

 

 

 

5

 

 

UNIDIRECTIONAL

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

Z

 

 

 

 

 

V

 

 

 

 

 

 

4

0

50

100

150

 

± 50

 

 

TA, AMBIENT TEMPERATURE (°C)

 

Figure 1. Typical Breakdown Voltage

versus Temperature

 

300

 

 

 

 

280

 

 

 

 

260

 

 

 

(pF)

240

 

UNIDIRECTIONAL

 

 

 

 

C, CAPACITANCE

220

 

 

 

 

 

200

 

 

 

180

BIDIRECTIONAL

 

 

160

 

 

 

 

 

 

140

 

 

 

 

120

 

 

 

 

100 0

1

2

3

BIAS (V)

Figure 3. Typical Capacitance versus Bias Voltage

 

10000

 

 

 

 

CURRENT (nA)

 

 

 

 

 

REVERSE LEAKAGE

1000

 

 

 

 

 

 

 

 

 

R,

 

 

 

 

 

I

 

 

 

 

 

 

100

0

50

100

150

 

± 50

 

 

TA, AMBIENT TEMPERATURE (°C)

 

Figure 2. Typical Leakage Current

versus Temperature

 

300

 

 

 

 

 

 

 

(mW)

250

 

 

 

 

 

 

 

 

 

 

ALUMINA SUBSTRATE

 

 

200

 

 

 

 

 

 

 

DISSIPATION

 

 

 

 

 

 

 

150

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

, POWER

100

 

 

 

 

 

 

 

 

 

FR-5 BOARD

 

 

 

 

 

50

 

 

 

 

 

 

 

D

 

 

 

 

 

 

 

P

 

 

 

 

 

 

 

 

 

0

25

50

75

100

125

150

175

 

0

 

 

 

TA, AMBIENT TEMPERATURE (°C)

 

 

Figure 4. Steady State Power Derating Curve

24 Watt Peak Power Data Sheet

Motorola TVS/Zener Device Data

5-56

 

MMBZ5V6ALT1

TYPICAL CHARACTERISTICS

 

 

 

PULSE WIDTH (tP) IS DEFINED

 

tr

 

AS THAT POINT WHERE THE

 

 

PEAK CURRENT DECAYS TO 50%

100

PEAK VALUE Ð I RSM

OF IRSM.

tr

10

μ

 

 

 

 

s

(%)

 

 

IRSM

 

VALUE

 

 

 

 

 

HALF VALUE Ð

2

 

 

 

 

 

 

 

 

50

 

 

 

 

 

 

 

tP

 

 

 

 

 

0

1

2

 

 

3

4

0

 

 

 

 

 

t, TIME (ms)

 

Figure 5. Pulse Waveform

 

100

 

 

RECTANGULAR

 

 

 

 

 

 

(W)

 

 

 

WAVEFORM, TA = 25°C

 

 

BIDIRECTIONAL

 

 

POWER

 

 

 

 

 

 

 

 

 

SURGE

10

 

 

 

 

 

UNIDIRECTIONAL

 

 

 

Ppk PEAK

 

 

 

 

 

 

 

 

 

 

1.0

1.0

10

100

1000

 

0.1

PW, PULSEWIDTH (ms)

Figure 7. Maximum Non-repetitive Surge

Power, Ppk versus PW

Power is defined as VRSM x IZ(pk) where VRSM is the clamping voltage at IZ(pk).

POWER

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

90

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PEAKOF

25=

80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

°

70

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IN %

A

60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

@ T

50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DERATING

CURRENT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PULSE

OR

40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PEAK

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

25

50

75

100

125

150

175

200

TA, AMBIENT TEMPERATURE (°C)

Figure 6. Pulse Derating Curve

 

100

 

 

 

 

(W)

 

 

 

RECTANGULAR

 

 

 

 

WAVEFORM, TA = 25°C

 

PEAK POWER

 

 

 

 

 

BIDIRECTIONAL

 

 

 

10

 

 

 

 

Ppk(NOM), NNOMINAL

 

 

 

 

 

UNIDIRECTIONAL

 

 

 

1.0

 

 

 

 

 

1.0

10

100

1000

 

0.1

PW, PULSEWIDTH (ms)

Figure 8. Maximum Non-repetitive Surge

Power, Ppk(NOM) versus PW

Power is defined as VZ(NOM) x IZ(pk) where

VZ(NOM) is the nominal zener voltage measured at the low test current used for voltage classification.

Motorola TVS/Zener Device Data

24 Watt Peak Power Data Sheet

 

5-57

MMBZ5V6ALT1

TYPICAL COMMON ANODE APPLICATIONS

A dual junction common anode design in a SOT-23 package protects two separate lines using only one package. This adds flexibility and creativity to PCB design especially when

board space is at a premium. Two simplified examples of MMBZ5V6ALT1 TVS applications are illustrated below.

Computer Interface Protection

 

 

A

 

KEYBOARD

 

B

 

TERMINAL

I/O

C

FUNCTIONAL

PRINTER

 

D

DECODER

ETC.

 

 

GND

MMBZ5V6ALT1

Microprocessor Protection

VDD

 

VGG

ADDRESS BUS

 

RAM

ROM

 

DATA BUS

I/O

CPU

MMBZ5V6ALT1

 

CLOCK

 

CONTROL BUS

 

GND

MMBZ5V6ALT1

 

24 Watt Peak Power Data Sheet

Motorola TVS/Zener Device Data

5-58

 

MMBZ5V6ALT1

INFORMATION FOR USING THE SOT-23 SURFACE MOUNT PACKAGE

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to insure proper solder connection interface

between the board and the package. With the correct pad geometry, the packages will self align when subjected to a solder reflow process.

0.037

0.037 0.95

0.95

0.079

2.0

0.035

0.9

0.031

inches

0.8mm

SOT-23

SOT-23 POWER DISSIPATION

The power dissipation of the SOT-23 is a function of the

SOLDERING PRECAUTIONS

drain pad size. This can vary from the minimum pad size for

The melting temperature of solder is higher than the rated

soldering to a pad size given for maximum power dissipation.

temperature of the device. When the entire device is heated

Power dissipation for a surface mount device is determined by

to a high temperature, failure to complete soldering within a

TJ(max), the maximum rated junction temperature of the die,

short time could result in device failure. Therefore, the

RθJA, the thermal resistance from the device junction to

following items should always be observed in order to

ambient, and the operating temperature, TA. Using the values

minimize the thermal stress to which the devices are

provided on the data sheet for the SOT-23 package, PD can

subjected.

be calculated as follows:

 

 

Always preheat the device.

 

 

 

 

PD =

TJ(max) ± TA

The delta temperature between the preheat and soldering

 

 

 

should be 100°C or less.*

 

RθJA

 

 

The values for the equation are found in the maximum

When preheating and soldering, the temperature of the

leads and the case must not exceed the maximum

ratings table on the data sheet. Substituting these values into

temperature ratings as shown on the data sheet. When

the equation for an ambient temperature TA of 25°C, one can

using infrared heating with the reflow soldering method,

calculate the power dissipation of the device which in this case

the difference shall be a maximum of 10°C.

is 225 milliwatts.

 

 

 

 

The soldering temperature and time shall not exceed

 

 

 

 

°

°

 

260°C for more than 10 seconds.

PD = 150 C ± 25 C = 225 milliwatts

When shifting from preheating to soldering, the maximum

556°C/W

temperature gradient shall be 5°C or less.

The 556°C/W for the SOT-23 package assumes the use of

After soldering has been completed, the device should be

the recommended footprint on a glass epoxy printed circuit

allowed to cool naturally for at least three minutes.

board to achieve a power dissipation of 225 milliwatts. There

Gradual cooling should be used as the use of forced

are other alternatives to achieving higher power dissipation

cooling will increase the temperature gradient and result

from the SOT-23 package. Another alternative would be to use

in latent failure due to mechanical stress.

a ceramic substrate or an aluminum core board such as

Mechanical stress or shock should not be applied during

Thermal Clad . Using a board material such as Thermal Clad,

cooling.

an aluminum core board, the power dissipation can be

* Soldering a device without preheating can cause excessive

doubled using the same footprint.

 

 

 

 

thermal shock and stress which can result in damage to the

 

 

 

 

device.

 

 

 

 

Motorola TVS/Zener Device Data

24 Watt Peak Power Data Sheet

 

 

 

 

5-59

Transient Voltage Suppressors Ð Surface Mounted

24 Watt Peak Power

 

A

 

 

L

 

 

3

S

 

B

1

2

 

V

G

 

 

 

C

 

D

H

K

J

NOTES:

1.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

2.CONTROLLING DIMENSION: INCH.

3.MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

 

INCHES

MILLIMETERS

DIM

MIN

MAX

MIN

MAX

A

0.1102

0.1197

2.80

3.04

B

0.0472

0.0551

1.20

1.40

C

0.0350

0.0440

0.89

1.11

D

0.0150

0.0200

0.37

0.50

G

0.0701

0.0807

1.78

2.04

H

0.0005

0.0040

0.013

0.100

J

0.0034

0.0070

0.085

0.177

K

0.0180

0.0236

0.45

0.60

L

0.0350

0.0401

0.89

1.02

S

0.0830

0.0984

2.10

2.50

V

0.0177

0.0236

0.45

0.60

STYLE 12:

PIN 1. CATHODE

2.CATHODE

3.ANODE

CASE 318-07

PLASTIC

(Refer to Section 10 for Surface Mount, Thermal Data and Footprint Information.)

MULTIPLE PACKAGE QUANTITY (MPQ)

REQUIREMENTS

Package Option

Type No. Suffix

MPQ (Units)

 

 

 

Tape and Reel

T1

3K

 

 

 

Tape and Reel

T3

10K

 

 

 

(Refer to Section 10 for more information on Packaging Specifications.)

24 Watt Peak Power Data Sheet

Motorola TVS/Zener Device Data

5-60

 

MOTOROLA

SEMICONDUCTOR TECHNICAL DATA

Order this document by MMBZ15VDLT1/D

15 & 27 Volt SOT-23 Dual Monolithic Common

Cathode Zeners

Transient Voltage Suppressors for ESD Protection

These dual monolithic silicon zener diodes are designed for applications requiring transient overvoltage protection capability. They are intended for use in voltage and ESD sensitive equipment such as computers, printers, business machines, communication systems, medical equipment and other applications. Their dual junction common cathode design protects two separate lines using only one package. These devices are ideal for situations where board space is at a premium.

Specification Features:

SOT±23 Package Allows Either Two Separate Unidirectional Configurations or a Single Bidirectional Configuration

Peak Power Ð 40 Watts @ 1.0 ms (Bidirectional), per Figure 5 Waveform

Maximum Clamping Voltage @ Peak Pulse Current

Low Leakage < 100 nA

ESD Rating of Class N (exceeding 16 kV) per the Human Body Model

Mechanical Characteristics:

Void Free, Transfer±Molded, Thermosetting Plastic Case

Corrosion Resistant Finish, Easily Solderable

Package Designed for Optimal Automated Board Assembly

Small Package Size for High Density Applications

Available in 8 mm Tape and Reel

Use the Device Number to order the 7 inch/3,000 unit reel. Replace

the ªT1º with ªT3º in the Device Number to order the 13 inch/10,000 unit reel.

MMBZ15VDLT1

MMBZ27VCLT1

Motorola Preferred Devices

SOT±23

COMMON CATHODE

DUAL ZENER

OVERVOLTAGE

TRANSIENT SUPPRESSORS

40 WATTS

PEAK POWER

3

1

2

CASE 318±08

TO±236AB

LOW PROFILE SOT±23

1

3

2

TERMINAL 1 ± ANODE

TERMINAL 2 ± ANODE

TERMINAL 3 ± CATHODE

THERMAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Characteristic

Symbol

Value

Unit

 

 

 

 

Peak Power Dissipation @ 1.0 ms (1)

Ppk

40

Watts

@ TA 25°C

 

 

 

Total Power Dissipation on FR±5 Board (2) @ TA = 25°C

PD

225

mW

Derate above 25°C

 

1.8

mW/°C

 

 

 

 

Thermal Resistance Junction to Ambient

RθJA

556

°C/W

Total Power Dissipation on Alumina Substrate (3) @ TA = 25°C

PD

300

mW

Derate above 25°C

 

2.4

mW/°C

 

 

 

 

Thermal Resistance Junction to Ambient

RθJA

417

°C/W

Junction and Storage Temperature Range

TJ

± 55 to +150

°C

 

Tstg

 

 

Lead Solder Temperature Ð Maximum (10 Second Duration)

TL

230

°C

1.Non±repetitive current pulse per Figure 5 and derate above TA = 25°C per Figure 6.

2.FR±5 = 1.0 x 0.75 x 0.62 in.

3.Alumina = 0.4 x 0.3 x 0.024 in., 99.5% alumina

Thermal Clad is a trademark of the Bergquist Company

Preferred devices are Motorola recommended choices for future use and best overall value.

Rev 1

Motorola, Inc. 1996

MMBZ15VDLT1 MMBZ27VCLT1

61

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

UNIDIRECTIONAL (Circuit tied to Pins 1 and 3 or Pins 2 and 3)

(VF = 0.9 V Max @ IF = 10 mA)

 

Breakdown Voltage

 

Reverse Voltage

Max Reverse

Max Reverse

Max Reverse

Maximum

 

 

 

 

 

 

Voltage @ IRSM(5)

Temperature

 

 

VBR(4)

 

 

 

Working Peak

Leakage Current

Surge Current

 

 

 

 

@ IT

(Clamping Voltage)

Coefficient of

 

 

(V)

 

 

V

RWM

I

I

(5)

 

 

 

 

 

(mA)

 

RWM

 

RSM

VRSM

VBR

 

 

 

 

 

 

(V)

IR (nA)

 

(A)

Min

 

Nom

Max

 

 

 

 

(V)

(mV/°C)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14.3

 

15

15.8

 

1.0

12.8

100

 

1.9

21.2

12

 

 

 

 

 

 

 

 

 

 

 

 

 

(VF = 1.1 V Max @ IF = 200 mA)

 

Breakdown Voltage

 

Reverse Voltage

Max Reverse

Max Reverse

Max Reverse

Maximum

 

 

 

 

 

 

Voltage @ IRSM(5)

Temperature

 

 

VBR(4)

 

 

 

Working Peak

Leakage Current

Surge Current

 

 

 

 

@ IT

(Clamping Voltage)

Coefficient of

 

 

(V)

 

 

V

RWM

I

I

(5)

 

 

 

 

 

(mA)

 

RWM

 

RSM

VRSM

VBR

 

 

 

 

 

 

(V)

IR (nA)

 

(A)

Min

 

Nom

Max

 

 

 

 

(V)

(mV/°C)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25.65

 

27

28.35

 

1.0

 

22

50

 

1.0

38

26

 

 

 

 

 

 

 

 

 

 

 

 

 

(4)VBR measured at pulse test current IT at an ambient temperature of 25°C.

(5)Surge current waveform per Figure 5 and derate per Figure 6.

TYPICAL CHARACTERISTICS

 

 

MMBZ15VDLT1

 

 

17

 

 

 

(VOLTS)

16

 

BIDIRECTIONAL

 

 

 

 

 

 

 

 

VOLTAGE

)

 

 

 

T

 

 

 

@I

 

 

 

15

 

 

 

BR

 

 

 

BREAKDOWN

14

 

 

 

(V

 

UNIDIRECTIONAL

 

 

 

 

 

 

13

 

 

+ 125

 

± 40

+ 25

+ 85

TEMPERATURE (°C)

Figure 1A. Typical Breakdown Voltage

versus Temperature

 

 

MMBZ27VCLT1

 

 

29

 

 

 

(VOLTS)

 

 

BIDIRECTIONAL

 

28

 

 

 

 

 

 

 

VOLTAGE

)

 

 

 

T

 

 

 

@I

 

 

 

27

 

 

 

BR

 

 

 

BREAKDOWN

26

 

 

 

(V

 

 

 

 

25

 

 

+ 125

 

± 55

+ 25

+ 85

TEMPERATURE (°C)

Figure 1B. Typical Breakdown Voltage

versus Temperature

MOTOROLA

MMBZ15VDLT1 MMBZ27VCLT1

62

10000

 

 

 

100

 

 

 

10

 

 

 

(nA)

 

 

 

R

 

 

 

I

 

 

 

1

 

 

 

0.1

 

 

 

0.01

 

 

 

± 40

+ 25

+ 85

+ 125

TEMPERATURE (°C)

Figure 2. Typical Leakage Current

versus Temperature

 

MMBZ15VDLT1

 

 

100

 

 

90

 

 

80

 

(pF)

70

 

UNIDIRECTIONAL

 

CAPACITANCE

 

60

 

50

 

40

 

BIDIRECTIONAL

 

C,

30

 

 

20

 

 

10

 

 

0

12.8

 

1

BIAS (V)

Figure 3. Typical Capacitance versus

Bias Voltage

 

300

 

 

 

 

 

 

 

(mW)

250

 

 

 

 

 

 

 

 

 

 

ALUMINA SUBSTRATE

 

 

200

 

 

 

 

 

 

 

DISSIPATION

 

 

 

 

 

 

 

150

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

, POWER

100

 

 

 

 

 

 

 

 

 

FR±5 BOARD

 

 

 

 

50

 

 

 

 

 

 

 

D

 

 

 

 

 

 

 

P

 

 

 

 

 

 

 

 

 

0

25

50

75

100

125

150

175

 

0

 

 

 

 

TEMPERATURE (°C)

 

 

 

Figure 4. Steady State Power Derating Curve

 

 

 

PULSE WIDTH (tP) IS DEFINED

 

tr

 

AS THAT POINT WHERE THE

 

 

PEAK CURRENT DECAYS TO

 

 

 

100

PEAK VALUE Ð I RSM

50% OF IRSM.

 

 

 

 

tr 10 μs

 

(%)

 

 

IRSM

 

VALUE

 

HALF VALUE Ð

 

 

2

 

 

 

 

 

 

 

 

50

 

 

 

 

 

tP

 

 

 

0

1

2

3

4

0

t, TIME (ms)

Figure 5. Pulse Waveform

POWER

25=

PEAKOF

 

C

 

°

PULSEDERATING IN %

A

OR CURRENT @ T

PEAK

 

100

 

 

 

 

 

 

 

 

 

90

 

 

 

 

 

 

 

 

 

80

 

 

 

 

 

 

 

 

 

70

 

 

 

 

 

 

 

 

 

60

 

 

 

 

 

 

 

 

 

50

 

 

 

 

 

 

 

 

 

40

 

 

 

 

 

 

 

 

 

30

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

0

0

25

50

75

100

125

150

175

200

 

 

 

TA, AMBIENT TEMPERATURE (°C)

 

 

Figure 6. Pulse Derating Curve

MMBZ15VDLT1 MMBZ27VCLT1

MOTOROLA

 

63

INFORMATION FOR USING THE SOT±23 SURFACE MOUNT PACKAGE

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to insure proper solder connection

interface between the board and the package. With the correct pad geometry, the packages will self align when subjected to a solder reflow process.

0.037

0.037 0.95

0.95

0.079

2.0

0.035

0.9

0.031

inches

0.8mm

SOT±23

SOT±23 POWER DISSIPATION

The power dissipation of the SOT±23 is a function of the drain pad size. This can vary from the minimum pad size for soldering to a pad size given for maximum power dissipation. Power dissipation for a surface mount device is determined

by TJ(max), the maximum rated junction temperature of the die, RθJA, the thermal resistance from the device junction to

ambient, and the operating temperature, TA. Using the values provided on the data sheet for the SOT±23 package, PD can be calculated as follows:

TJ(max) ± TA

PD = RθJA

The values for the equation are found in the maximum ratings table on the data sheet. Substituting these values into the equation for an ambient temperature TA of 25°C, one can calculate the power dissipation of the device which in this case is 225 milliwatts.

PD =

150°C ± 25°C

= 225 milliwatts

556°C/W

 

 

The 556°C/W for the SOT±23 package assumes the use of the recommended footprint on a glass epoxy printed circuit board to achieve a power dissipation of 225 milliwatts. There are other alternatives to achieving higher power dissipation from the SOT±23 package. Another alternative would be to use a ceramic substrate or an aluminum core board such as Thermal Clad . Using a board material such as Thermal Clad, an aluminum core board, the power dissipation can be doubled using the same footprint.

SOLDERING PRECAUTIONS

The melting temperature of solder is higher than the rated temperature of the device. When the entire device is heated to a high temperature, failure to complete soldering within a short time could result in device failure. Therefore, the following items should always be observed in order to minimize the thermal stress to which the devices are subjected.

Always preheat the device.

The delta temperature between the preheat and soldering should be 100°C or less.*

When preheating and soldering, the temperature of the leads and the case must not exceed the maximum temperature ratings as shown on the data sheet. When

using infrared heating with the reflow soldering method, the difference shall be a maximum of 10°C.

The soldering temperature and time shall not exceed 260°C for more than 10 seconds.

When shifting from preheating to soldering, the maximum temperature gradient shall be 5°C or less.

After soldering has been completed, the device should be allowed to cool naturally for at least three minutes. Gradual cooling should be used as the use of forced cooling will increase the temperature gradient and result in latent failure due to mechanical stress.

Mechanical stress or shock should not be applied during cooling.

* Soldering a device without preheating can cause excessive thermal shock and stress which can result in damage to the device.

MOTOROLA

MMBZ15VDLT1 MMBZ27VCLT1

64

Соседние файлы в папке Rectifs