Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

motorola / IGBT / mhpm7b15a60arev0

.pdf
Источник:
Скачиваний:
4
Добавлен:
06.01.2022
Размер:
185.9 Кб
Скачать

MOTOROLA

SEMICONDUCTOR TECHNICAL DATA

Order this document by MHPM7B15A60A/D

Hybrid Power Module

Integrated Power Stage for 1.0 hp Motor Drives

This module integrates a 3-phase input rectifier bridge, 3-phase output inverter and brake transistor/diode in a single convenient package. The output inverter utilizes advanced insulated gate bipolar transistors (IGBT) matched with free-wheeling diodes to give optimal dynamic performance. It has been configured for use as a three-phase motor drive module or for many other power switching applications. The top connector pins have been designed for easy interfacing to the user's control board.

Short Circuit Rated 10 μs @ 25°C

Pin-to-Baseplate Isolation exceeds 2500 Vac (rms)

Convenient Package Outline

UL Recognized and Designed to Meet VDE

Access to Positive and Negative DC Bus

MAXIMUM DEVICE RATINGS (TJ = 25°C unless otherwise noted)

MHPM7B15A60A

Motorola Preferred Device

15 AMP, 600 VOLT

HYBRID POWER MODULE

PLASTIC PACKAGE

CASE 440-01, Style 1

Rating

Symbol

Value

Unit

 

 

 

 

INPUT RECTIFIER BRIDGE

 

 

 

 

 

 

 

Repetitive Peak Reverse Voltage

VRRM

600

V

Average Output Rectified Current

IO

15

A

Peak Non-repetitive Surge Current Ð (1/2 Cycle) (1)

IFSM

200

A

OUTPUT INVERTER

 

 

 

 

 

 

 

IGBT Reverse Voltage

VCES

600

V

Gate-Emitter Voltage

VGES

± 20

V

Continuous IGBT Collector Current

IC

15

A

Peak IGBT Collector Current Ð (PW = 1.0 ms) (2)

IC(pk)

30

A

Continuous Free-Wheeling Diode Current

IF

15

A

Peak Free-Wheeling Diode Current Ð (PW = 1.0 ms) (2)

IF(pk)

30

A

IGBT Power Dissipation

PD

55

W

Free-Wheeling Diode Power Dissipation

PD

30

W

IGBT Junction Temperature Range

TJ

± 40 to +125

°C

Free-Wheeling Diode Junction Temperature Range

TJ

± 40 to +125

°C

(1) 1 cycle = 50 or 60 Hz

 

 

 

(2) 1.0 ms = 1.0% duty cycle

 

 

 

Preferred devices are Motorola recommended choices for future use and best overall value.

Motorola, Inc. 1995

MOTOROLA

1

MAXIMUM DEVICE RATINGS (continued) (TJ = 25°C unless otherwise noted)

Rating

Symbol

Value

Unit

 

 

 

 

BRAKE CIRCUIT

 

 

 

 

 

 

 

IGBT Reverse Voltage

VCES

600

V

Gate-Emitter Voltage

VGES

± 20

V

Continuous IGBT Collector Current

IC

15

A

Peak IGBT Collector Current (PW = 1.0 ms) (2)

IC(pk)

30

A

IGBT Power Dissipation

PD

55

W

 

 

 

 

Diode Reverse Voltage

VRRM

600

V

Continuous Output Diode Current

IF

15

A

Peak Output Diode Current (PW = 1.0 ms) (2)

IF(pk)

30

A

TOTAL MODULE

 

 

 

 

 

 

 

Isolation Voltage Ð (47±63 Hz, 1.0 Minute Duration)

VISO

2500

VAC

Ambient Operating Temperature Range

TA

± 40 to + 85

°C

Operating Case Temperature Range

TC

± 40 to + 90

°C

Storage Temperature Range

Tstg

± 40 to +150

°C

Mounting Torque

Ð

6.0

lb±in

 

 

 

 

ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise noted)

Characteristic

Symbol

Min

Typ

Max

Unit

 

 

 

 

 

 

INPUT RECTIFIER BRIDGE

 

 

 

 

 

 

 

 

 

 

 

Reverse Leakage Current (VRRM = 600 V)

IR

Ð

10

50

μA

Forward Voltage (IF = 15 A)

VF

Ð

1.05

1.5

V

Thermal Resistance (Each Die)

RθJC

Ð

Ð

2.9

°C/W

OUTPUT INVERTER

 

 

 

 

 

 

 

 

 

 

 

Gate-Emitter Leakage Current (VCE = 0 V, VGE = ± 20 V)

IGES

Ð

Ð

± 20

μA

Collector-Emitter Leakage Current (VCE = 600 V, VGE = 0 V)

ICES

 

 

 

 

TJ = 25°C

 

Ð

Ð

200

μA

TJ = 125°C

 

Ð

Ð

2.0

mA

Gate-Emitter Threshold Voltage (VCE = VGE, IC = 1.0 mA)

VGE(th)

4.0

6.0

8.0

V

Collector-Emitter Breakdown Voltage (IC = 10 mA, VGE = 0)

V(BR)CES

600

700

Ð

V

Collector-Emitter Saturation Voltage (VGE = 15 V, IC = 15 A)

VCE(SAT)

Ð

2.7

3.5

V

Input Capacitance (VGE = 0 V, VCE = 10 V, f = 1.0 MHz)

Cies

Ð

950

Ð

pF

Input Gate Charge (VCE = 300 V, IC = 15 A, VGE = 15 V)

QT

Ð

75

Ð

nC

Fall Time Ð Inductive Load

tfi

 

 

 

 

(VCE = 300 V, IC = 15 A, VGE = 15 V, RG = 150 Ω)

 

Ð

200

350

ns

Turn-On Energy

E(on)

Ð

Ð

1.0

mJ

(VCE = 300 V, IC = 15 A, VGE = 15 V, RG = 150 Ω)

 

 

 

 

 

Turn-Off Energy

E(off)

Ð

Ð

1.0

mJ

(VCE = 300 V, IC = 15 A, VGE = 15 V, RG = 150 Ω)

 

 

 

 

 

Diode Forward Voltage (IF = 15 A, VGE = 0 V)

VF

Ð

1.5

2.0

V

Diode Reverse Recovery Time

trr

 

 

 

 

(IF = 15 A, V = 400 V, dI/dt = 50 A/μs)

 

Ð

140

200

ns

Diode Stored Charge (IF = 15 A, V = 400 V, di/dt = 50 A/μs)

Qrr

Ð

Ð

900

nC

Thermal Resistance Ð IGBT (Each Die)

RθJC

Ð

Ð

1.9

°C/W

Thermal Resistance Ð Free-Wheeling Diode (Each Die)

RθJC

Ð

Ð

3.7

°C/W

(2) 1.0 ms = 1.0% duty cycle

 

 

 

 

 

MHPM7B15A60A

MOTOROLA

2

 

ELECTRICAL CHARACTERISTICS (continued) (TJ = 25°C unless otherwise noted)

Characteristic

Symbol

Min

Typ

Max

Unit

 

 

 

 

 

 

BRAKE CIRCUIT

 

 

 

 

 

 

 

 

 

 

 

Gate-Emitter Leakage Current (VCE = 0 V, VGE = ± 20 V)

IGES

Ð

Ð

± 20

μA

Collector-Emitter Leakage Current (VCE = 600 V, VGE = 0 V) (1)

ICES

 

 

 

 

TJ = 25°C

 

Ð

Ð

200

μA

TJ = 125°C

 

Ð

Ð

2.0

mA

Gate-Emitter Threshold Voltage (VCE = VGE, IC = 1.0 mA)

VGE(th)

4.0

6.0

8.0

V

Collector-Emitter Breakdown Voltage (IC = 10 mA, VGE = 0)

V(BR)CES

600

700

Ð

V

Collector-Emitter Saturation Voltage (VGE = 15 V, IC = 15 A) (1)

VCE(SAT)

Ð

2.7

3.5

V

Input Capacitance (VGE = 0 V, VCE = 10 V, f = 1.0 MHz)

Cies

Ð

950

Ð

pF

Input Gate Charge (VCE = 300 V, IC = 15 A, VGE = 15 V)

QT

Ð

75

Ð

nC

Fall Time Ð Inductive Load

tfi

 

 

 

 

(VCE = 300 V, IC = 15 A, VGE = 15 V, RG = 150 Ω)

 

Ð

200

350

ns

Turn-On Energy

E(on)

 

 

 

 

(VCE = 300 V, IC = 15 A, VGE = 15 V, RG = 150 Ω)

 

Ð

Ð

1.0

mJ

Turn-Off Energy

E(off)

 

 

 

 

(VCE = 300 V, IC = 15 A, VGE = 15 V, RG = 150 Ω)

 

Ð

Ð

1.0

mJ

Diode Forward Voltage (IF = 15 A)

VF

Ð

1.5

2.0

V

Diode Reverse Leakage Current

IR

Ð

Ð

50

μA

Thermal Resistance Ð IGBT

RθJC

Ð

Ð

1.9

°C/W

Thermal Resistance Ð Diode

RθJC

Ð

Ð

3.7

°C/W

(1) 1 cycle = 50 or 60 Hz.

MOTOROLA

MHPM7B15A60A

 

3

4

MHPM7B15A60A

Schematic Stage Power Integrated .1 Figure

MOTOROLA

 

 

 

1

7

 

 

 

 

 

 

 

 

 

P1

P2

 

 

 

 

 

 

 

 

 

 

 

Q1

 

Q3

 

Q5

 

 

 

 

9

 

D1

11

D3

13

D5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G1

 

 

G3

 

G5

 

 

 

 

 

E1

 

 

E3

 

E5

 

 

 

 

 

8

 

 

10

 

12

 

 

 

 

 

 

 

 

 

 

 

U

20

24

R

 

 

 

 

 

 

 

V

19

 

 

 

B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

23

S

 

21

 

 

 

 

 

W

18

22

T

 

Q7

 

Q2

 

Q4

 

Q6

 

 

 

 

 

 

 

 

 

15

16

 

D2

17

D4

14

D6

 

 

 

 

 

 

 

 

 

 

 

G7

G2

 

 

G4

 

G6

 

 

 

N1

N2

 

 

 

 

 

 

 

 

 

25

6

 

 

 

 

 

 

 

 

 

 

 

 

NC

2

 

 

 

DEVICE INTEGRATION

 

 

 

 

 

 

 

 

 

NC

 

 

3

These pins are physical

 

 

 

 

 

 

 

= PIN NUMBER IDENTIFICATION

 

terminations but not

3±Phase

Brake

3±Phase

 

NC

 

 

4

connected internally.

Input

Output

 

 

IGBT/

 

 

 

 

 

Rectifier

IGBT/Diode

 

 

 

 

 

Diode

NC

 

 

5

 

Bridge

Bridge

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VGE

 

 

 

90%

IC

L

VCE

IC

 

RG

 

 

 

 

 

VCE

90%

 

 

 

VCE 10%

10%

td(off) tf

toff

Figure 2. Inductive Switching Time Test Circuit and Timing Chart

Typical Characteristics

I F, FORWARD CURRENT (A)

50

 

 

 

 

125°C

 

25°C

 

 

 

 

1.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THERMALTRANSIENTEFFECTIVE

(NORMALIZED)RESISTANCE

D = 0.5

 

 

D Curves apply for power pulse

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.2

 

 

 

 

 

 

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.1

 

 

 

P(pk)

 

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RθJC(t) = r(t)(RθJC)

t1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RθJC = 3.2°C/W

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

r(t),

 

 

 

 

train shown read time at t1

 

 

 

 

 

 

 

 

 

 

 

 

 

SINGLE PULSE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TJ(pk)±TC = P(pk) RθJC(t)

 

0

 

 

 

 

 

 

 

 

 

 

 

0.01

 

 

 

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

 

0.01

0.1

1.0

10

100

 

1000

 

 

 

VF, FORWARD VOLTAGE (V)

 

 

 

 

 

 

t, TIME (ms)

 

 

 

Figure 3. Input Bridge Forward Current versus

Figure 4. Input Rectifier Bridge Thermal

Forward Voltage

Response

MOTOROLA

MHPM7B15A60A

 

5

Typical Characteristics

 

50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25°C

 

 

125°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A)

40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CURRENT

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FORWARD,

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

3

4

5

 

0

VF, FORWARD VOLTAGE (V)

Figure 5. Output Inverter Diode Forward Currrent

versus Forward Voltage

IC, COLLECTOR CURRENT (A)

50

20 V

12 V

10 V

 

 

15 V

 

 

40

30

20

 

 

 

 

 

 

 

 

8 V

 

 

 

 

10

 

 

 

 

 

 

 

 

7 V

 

 

 

 

0

 

 

 

 

 

4

6

8

10

0

VCE, COLLECTOR±EMITTER VOLTAGE (V)

Figure 6. Output Inverter Collector-Current

versus Collector-Emitter Voltage

VCE , COLLECTOR-EMITTER VOLTAGE (V)

20

16

12

8

4

0

0

5 A

10 A

20 A

 

(V)

450

°

 

 

 

 

 

 

 

 

18

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VOLTAGE

400

TJ = 25 C

 

 

 

 

 

 

 

 

16

 

 

 

 

 

IC = 15 A

 

 

 

 

 

 

 

 

(V)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

350

 

 

 

 

100 V

 

 

 

300 V

14

 

 

 

 

 

EMITTER-

300

 

 

 

 

200 V

 

 

 

 

12

VOLTAGE

 

 

 

 

250

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COLLECTOR

200

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

4

V

 

 

 

 

 

150

 

 

 

 

 

 

 

 

 

6

GATE,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GE

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CE

50

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

4

8

12

16

20

0

10

20

30

40

50

60

70

80

90

0

 

0

100

 

VGE, GATE-EMITTER VOLTAGE (V)

 

 

 

 

 

 

QG, GATE CHARGE (nC)

 

 

 

 

 

Figure 7. Output Inverter Collector-Emitter

Figure 8. Gate±to±Emitter Voltage versus

Voltage versus Gate-Emitter Voltage

Gate Charge

1000

(μJ)

 

ENERGY

100

 

SWITCHING

10

 

 

1

 

VCE = 300 V

 

 

1000

 

 

 

 

 

 

VCE = 300 V

 

 

VGE = 15 V

 

 

VGE = 15 V

 

 

RG = 150 Ω

 

ENERGY (μJ)

I

C

= 15 A

 

 

 

 

 

 

 

 

 

 

100

 

 

 

 

125°C

 

SWITCHING

 

 

 

 

 

 

 

25°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25°C

 

 

 

 

 

 

1

10

100

 

10

 

100

1000

 

10

 

 

IC, COLLECTOR CURRENT (A)

 

 

 

 

RG, GATE RESISTANCE (Ω)

 

Figure 9. Inverter Switching Energy E(off) versus

Figure 10. Inverter Switching Energy E(off)

Collector Current IC

versus Gate Resistance RG

 

 

MHPM7B15A60A

MOTOROLA

6

 

SWITCHING TIME (ns)

 

 

 

 

 

Typical Characteristics

 

 

1000

 

 

 

 

 

 

1000

 

 

V

 

 

= 300 V

 

 

VCE = 300 V

 

 

CE

 

 

 

 

VGE = 15 V

 

 

VGE = 15 V

 

 

 

 

R

G

= 150

Ω

 

 

RG = 150 Ω

 

 

TJ = 25°C

 

 

(ns)

TJ = 125°C

 

 

100

 

 

 

 

 

100

 

 

 

 

 

 

 

TIME

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

SWITCHING

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

tf @ 125

 

 

 

 

 

f

 

 

 

td @ 125

 

 

 

 

 

td

 

 

 

1

 

 

 

 

t(off)

 

1

 

t(off) @ 125

 

 

 

10

100

 

10

100

1

 

 

 

 

1

IC, COLLECTOR CURRENT (A)

IC, COLLECTOR CURRENT (A)

Figure 11. Inverter Switching Time tf, td, t(off)

Figure 12. Inverter Switching Time tf, td, t(off)

versus Collector Current IC

versus Collector Current IC

 

1000

 

 

 

1000

VCE = 300 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VGE = 15 V

 

 

 

 

 

 

 

 

RG = 150 Ω

 

 

(ns)

 

 

 

(ns)

 

125°C

 

 

 

 

 

100

25°C

 

 

TIME

 

 

 

TIME

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SWITCHING

100

 

 

SWITCHING

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

VCE = 300 V

tf

 

 

 

 

 

 

 

VGE = 15 V

td

 

 

 

 

 

 

 

IC = 15 A

t(off)

 

 

 

 

 

 

10

TJ = 25°C

 

 

1

 

 

 

 

100

1000

 

 

10

100

 

10

 

1

 

 

 

RG, GATE RESISTANCE (Ω)

 

 

 

IC, COLLECTOR CURRENT (A)

 

 

 

Figure 13. Inverter Switching Time

 

 

 

Figure 14. Inverter Switching Time tr versus

 

 

 

tf, td, t(off) versus Gate Resistance RG

 

 

 

Collector Current IC

 

 

1000

VCE = 300 V

 

10000

 

 

 

 

 

 

 

 

 

Cies

 

 

 

VGE = 15 V

 

 

 

 

 

 

 

IC = 15 A

 

 

 

 

 

 

SWITCHINGTIME (ns)

 

TJ = 25°C

 

CAPACITANCE(pF)

1000

 

Coes

 

100

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

Cres

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

1

100

1000

 

1

10

100

1000

 

10

 

1

 

 

RG, GATE RESISTANCE (Ω)

 

 

 

 

VCE (V)

 

Figure 15. Inverter Switching Time tr versus

Figure 16. Inverter Capacitance versus VCE

Gate Resistance RG

MOTOROLA

MHPM7B15A60A

 

7

Typical Characteristics

EFFECTIVE TRANSIENT THERMAL

RESISTANCE (NORMALIZED)

r(t),

 

1.0

 

 

 

 

THERMAL

D = 0.5

 

 

 

 

 

 

 

 

 

0.2

 

 

 

 

TRANSIENT

0.1

 

 

 

P(pk)

 

 

 

EFFECTIVE

 

 

 

D Curves apply for power pulse

 

 

 

 

t1

 

 

 

 

RθJC(t) = r(t)(RθJC)

 

 

 

 

 

t2

 

 

 

 

RθJC = 2.2°C/W

 

 

SINGLE PULSE

 

train shown read time at t1

r(t),

 

 

TJ(pk)±TC = P(pk) RθJC(t)

 

0.01

 

 

 

0.01

0.1

1.0

10

100

1000

 

1.0

 

 

(NORMALIZED)

 

D = 0.5

 

0.1

0.2

P(pk)

 

 

 

RESISTANCE

 

 

t1

 

 

 

RθJC(t) = r(t)(RθJC)

 

 

 

t2

 

 

 

RθJC = 3.4°C/W

 

 

 

D Curves apply for power pulse

 

 

SINGLE PULSE

train shown read time at t1

 

 

TJ(pk)±TC = P(pk) RθJC(t)

 

 

 

0.01

0.1

1.0

10

100

1000

0.01

t, TIME (ms)

t, TIME (ms)

Figure 17. Ouput Inverter IGBT

Figure 18. Output Diode Thermal Response

Thermal Response

 

I C, COLLECTOR CURRENT (A)

40

35

30

25

20

15

10

L = 200 μH

5 VGE = 15 V

RG = 150 Ω

0

0

100

200

300

400

500

600

700

800

 

 

VCE, COLLECTOR-EMITTER VOLTAGE (V)

 

 

Figure 19. Output Inverter Reverse Bias Safe

Operating Area (RBSOA)

MHPM7B15A60A

MOTOROLA

8

 

PACKAGE DIMENSIONS

E

C

V

 

K

 

 

 

 

AB

 

AE

 

 

 

AA

 

 

 

 

 

 

 

 

 

 

AC

 

 

 

AF

 

9 PL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AD

 

3 PL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DETAIL Z

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q

 

 

 

 

 

 

 

N

 

G

 

AH

 

 

 

 

2 PL

 

 

 

 

 

W

 

1

 

2 PL

 

17

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T

2 PL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M

 

 

 

 

 

 

 

 

S

R

B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTES:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. DIMENSIONING AND TOLERANCING PER ANSI

 

 

 

 

 

 

 

 

 

 

 

Y14.5M, 1982.

 

 

 

Y

 

25

 

 

 

 

18

 

 

X

2.

CONTROLLING DIMENSION: MILLIMETER.

 

 

 

AG

 

 

 

 

 

3.

LEAD LOCATION DIMENSIONS (ie: M, B. AA...)

4 PL

 

 

 

 

 

 

 

 

4 PL

ARE TO THE CENTER OF THE LEAD.

 

 

 

P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MILLIMETERS

INCHES

 

 

 

 

U

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DIM

MIN

MAX

MIN

MAX

 

 

 

 

 

 

 

 

 

 

 

 

A

97.54

98.55

3.840

3.880

 

 

 

 

 

 

 

 

 

 

 

 

B

52.45

53.47

2.065

2.105

 

 

 

 

 

 

 

 

 

 

 

 

C

14.60

15.88

0.575

0.625

 

H

 

 

 

 

J

 

 

 

 

 

D

0.43

0.84

0.017

0.033

 

 

 

 

 

 

 

 

 

 

E

10.80

12.06

0.425

0.475

 

 

 

 

 

25 PL

 

 

 

 

 

 

7 PL

 

 

 

 

 

 

 

 

 

F

0.94

1.35

0.037

0.053

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G

1.60

2.21

0.063

0.087

 

 

 

 

 

 

 

 

 

 

 

 

H

8.58

9.19

0.338

0.362

 

 

 

 

 

 

 

 

 

 

 

 

J

0.30

0.71

0.012

0.028

 

 

 

 

 

 

 

 

 

 

 

 

K

18.80

20.57

0.74

0.81

 

 

 

 

 

 

 

 

 

 

 

 

L

19.30

20.32

0.760

0.800

 

 

 

 

 

 

 

 

 

 

 

 

M

38.99

40.26

1.535

1.585

 

 

 

 

 

 

 

 

 

 

 

 

N

9.78

11.05

0.385

0.435

 

 

 

 

 

 

 

 

 

 

 

 

P

82.55

83.57

3.250

3.290

 

 

 

 

 

 

 

 

 

 

 

 

Q

4.01

4.62

0.158

0.182

 

 

 

 

D

 

 

 

 

 

 

 

R

26.42

27.43

1.040

1.080

 

 

 

 

 

 

 

 

 

 

 

S

12.06

12.95

0.475

0.515

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F

 

 

 

 

 

 

 

 

 

T

4.32

5.33

0.170

0.210

 

 

 

 

 

 

 

 

 

 

 

U

86.36

87.38

3.400

3.440

 

 

 

 

 

 

 

 

 

 

 

 

V

14.22

15.24

0.560

0.600

 

 

 

 

 

 

 

 

 

 

 

 

W

7.62

8.13

0.300

0.320

 

 

 

 

DETAIL Z

 

 

 

 

 

 

X

6.55

7.16

0.258

0.282

 

 

 

 

 

 

 

 

 

 

Y

2.49

3.10

0.098

0.122

 

 

 

 

 

 

 

 

 

 

 

 

AA

2.24

2.84

0.088

0.112

STYLE 1:

 

 

 

 

 

 

 

 

 

 

 

AB

7.32

7.92

0.288

0.312

 

 

 

 

 

 

 

 

 

 

 

AC

4.78

5.38

0.188

0.212

PIN 1. P1

PIN 6.

N2

PIN 11.

G3

PIN 16.

G2

PIN 21.

B

 

 

 

 

AD

8.58

9.19

0.338

0.362

2.

7.

P2

12.

K5

17.

G4

22.

T

 

 

 

 

AE

6.05

6.65

0.238

0.262

3. T+

8.

K1

13.

G5

18.

W

23.

S

 

 

 

 

AF

4.78

5.38

0.188

0.212

4.

I+

9.

G1

14.

G6

19.

V

24.

R

 

 

 

 

AG

69.34

70.36

2.730

2.770

5.

10.

K3

15.

G7

20.

U

25.

N1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AH

±±±

5.08

±±±

0.200

CASE 440-01

ISSUE O

MOTOROLA

MHPM7B15A60A

 

9

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. ªTypicalº parameters can and do vary in different applications. All operating parameters, including ªTypicalsº must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

 

 

USA/EUROPE: Motorola Literature Distribution;

JAPAN: Nippon Motorola Ltd.; Tatsumi±SPD±JLDC, Toshikatsu Otsuki,

P.O. Box 20912; Phoenix, Arizona 85036. 1±800±441±2447

6F Seibu±Butsuryu±Center, 3±14±2 Tatsumi Koto±Ku, Tokyo 135, Japan. 03±3521±8315

MFAX: RMFAX0@email.sps.mot.com ±TOUCHTONE (602) 244±6609

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,

INTERNET: http://Design±NET.com

51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852±26629298

 

 

CODELINE TO BE PLACED HERE

MHPM7B15A60 /D

 

MOTOROLA

10

*MHPM7B15A60A/D*

 

Соседние файлы в папке IGBT