Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

motorola / diod / mr750rev2dx

.pdf
Источник:
Скачиваний:
2
Добавлен:
06.01.2022
Размер:
193.23 Кб
Скачать

MOTOROLA

SEMICONDUCTOR TECHNICAL DATA

Order this document by MR750/D

Designer's Data Sheet

High Current Lead Mounted

Rectifiers

Current Capacity Comparable to Chassis Mounted Rectifiers

Very High Surge Capacity

Insulated Case

Mechanical Characteristics:

Case: Epoxy, Molded

Weight: 2.5 grams (approximately)

Finish: All External Surfaces Corrosion Resistant and Terminal Lead is Readily Solderable

Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds

Polarity: Cathode Polarity Band

Shipped 1000 units per plastic bag. Available Tape and Reeled, 800 units per reel by adding a ªRL'' suffix to the part number

Marking: R750, R751, R752, R754, R758, R760

MAXIMUM RATINGS

MR750

MR751

MR752

MR754

MR756

MR758

MR760

MR754 and MR760 are Motorola Preferred Devices

HIGH CURRENT

LEAD MOUNTED SILICON RECTIFIERS 50±1000 VOLTS DIFFUSED JUNCTION

CASE 194±04

Characteristic

 

Symbol

 

MR750

MR751

 

MR752

 

MR754

 

MR756

MR758

MR760

Unit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Peak Repetitive Reverse Voltage

 

VRRM

50

100

 

200

400

 

600

 

800

1000

 

Volts

Working Peak Reverse Voltage

 

VRWM

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DC Blocking Voltage

 

VR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Non±Repetitive Peak Reverse Voltage

 

VRSM

60

120

 

240

480

 

720

 

960

1200

 

Volts

(Halfwave, single phase, 60 Hz peak)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RMS Reverse Voltage

 

VR(RMS)

35

70

 

140

280

 

420

 

560

700

 

Volts

Average Rectified Forward Current

 

IO

 

 

 

 

22 (TL = 60°C, 1/8″ Lead Lengths)

 

 

 

Amps

(Single phase, resistive load, 60 Hz)

 

 

 

 

 

6.0 (TA = 60°C, P.C. Board mounting)

 

 

 

 

 

See Figures 5 and 6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Non±Repetitive Peak Surge Current

 

IFSM

 

 

 

 

 

 

400 (for 1 cycle)

 

 

 

 

 

 

 

Amps

(Surge applied at rated load conditions)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Operating and Storage Junction

 

TJ, Tstg

 

 

 

 

 

 

 

65 to +175

 

 

 

 

 

 

 

 

°C

Temperature Range

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ELECTRICAL CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Characteristic and Conditions

 

 

 

 

 

 

Symbol

 

Max

 

 

 

Unit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Maximum Instantaneous Forward Voltage Drop

 

 

 

 

 

 

 

 

 

vF

 

1.25

 

 

 

Volts

(iF = 100 Amps, TJ = 25°C)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Maximum Forward Voltage Drop

 

 

 

 

 

 

 

 

 

 

 

VF

 

0.90

 

 

 

Volts

(IF = 6.0 Amps, TA = 25°C, 3/8″ leads)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Maximum Reverse Current

TJ = 25°C

 

 

 

 

 

 

 

 

 

IR

 

25

 

 

 

mA

(Rated dc Voltage)

TJ = 100°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.0

 

 

 

mA

Designer's Data for ªWorst Caseº Conditions Ð The Designer's Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit curves Ð representing boundaries on device characteristics Ð are given to facilitate ªworst caseº design.

Preferred devices are Motorola recommended choices for future use and best overall value.

Rev 2

Rectifier Device Data

Motorola, Inc. 1996

MR750

MR751

MR752

MR754

MR756

MR758

MR760

 

 

 

 

 

 

 

 

 

700

 

 

 

 

 

 

 

 

 

(AMP)

600

 

 

 

 

VRRM MAY BE APPLIED BETWEEN

 

 

500

 

°

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EACH CYCLE OF SURGE. THE TJ

 

 

 

TJ = 25 C

 

 

 

 

 

 

 

400

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CURRENT

 

 

 

 

NOTED IS TJ PRIOR TO SURGE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

300

 

 

 

 

 

 

MAXIMUM

 

300

 

 

 

 

 

 

 

 

 

 

 

200

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25°C

 

 

 

 

 

 

 

 

 

 

 

 

WAVE

 

 

 

 

 

 

 

 

 

 

 

 

 

TYPICAL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

°

 

 

 

 

 

 

 

 

 

 

 

 

200

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25°C

 

175 C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

, PEAK HALF

 

 

 

 

TJ = 175°C

 

 

 

 

 

(AMP)

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

70

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CURRENT

50

 

 

 

 

 

 

 

 

 

FSM

80

 

 

 

 

 

 

 

 

 

 

30

 

 

 

 

 

 

 

 

 

I

60

 

 

 

 

 

 

 

 

 

 

FORWARD

 

 

 

 

 

 

 

 

 

 

1.0

2.0

 

5.0

10

 

20

50

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NUMBER OF CYCLES AT 60 Hz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

, INSTANTANEOUS

10

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Maximum Surge Capability

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.0

 

 

 

 

 

 

 

 

 

 

+0.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i

3.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

°C)

 

 

 

 

 

 

 

 

 

 

 

2.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(mV/

±0.5

 

 

 

TYPICAL RANGE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COEFFICIENT

 

 

 

 

 

 

 

 

 

 

 

1.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.7

 

 

 

 

 

 

 

 

 

±1.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±1.5

 

 

 

 

 

 

 

 

 

 

 

0.3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.2

 

 

 

 

 

 

 

 

 

 

±2.0

0.2

0.5

1.0

2.0

5.0

10

20

50

100

200

 

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

 

 

 

vF, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

 

 

 

iF, INSTANTANEOUS FORWARD CURRENT (AMP)

 

 

Figure 1. Forward Voltage

Figure 3. Forward Voltage Temperature Coefficient

THERMAL RESISTANCE (°C/W)

R θJL(t) , JUNCTION±TO±LEAD TRANSIENT

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

L

 

L

 

 

 

 

 

 

 

 

 

1/2º

 

 

 

 

 

 

 

 

 

 

 

3/8º

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.0

 

 

 

 

 

 

 

 

 

 

 

 

1/4º

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.0

 

HEAT SINK

 

 

 

 

 

 

 

 

 

 

1/8º

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.0

 

 

 

 

 

 

 

Both leads to heat sink, with lengths as shown. Variations in RqJL(t)

 

 

 

 

 

 

 

 

 

below 2.0 seconds are independent of lead connections of 1/8 inch

 

 

 

 

 

 

 

 

 

or greater, and vary only about ±20% from the values shown. Values

 

1.0

 

 

 

 

 

 

 

for times greater than 2.0 seconds may be obtained by drawing a

 

 

 

 

 

 

 

 

 

curve, with the end point (at 70 seconds) taken from Figure 8, or

 

0.5

 

 

 

 

 

 

 

calculated from the notes, using the given curves as a guide. Either

 

 

 

 

 

 

 

 

typical or maximum values may be used. For RqJL(t) values at pulse

 

0.3

 

 

 

 

 

 

 

widths less than 0.1 second, the above curve can be extrapolated

 

 

 

 

 

 

 

 

down to 10 μs at a continuing slope.

 

 

 

0.2

 

 

 

 

1.0

2.0

 

5.0

 

10

20

 

50

 

0.1

0.2

0.3

0.5

0.7

3.0

7.0

30

70

t, TIME (SECONDS)

Figure 4. Typical Transient Thermal Resistance

2

Rectifier Device Data

 

 

 

 

 

 

 

 

 

 

MR750

 

MR751

MR752

MR754

MR756

MR758

MR760

,AVERAGE FORWARD CURRENT (AMPS)

28

 

 

 

 

 

 

RESISTIVE INDUCTIVE

, AVERAGE FORWARD CURRENT (AMPS)

 

7.0

 

 

 

RθJA = 25°C/W

 

 

 

 

 

 

 

L = 1/8º

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24

 

 

 

 

 

 

LOADS

 

 

 

6.0

 

 

 

 

SEE NOTE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

1/4º

 

 

 

 

BOTH LEADS TO HEAT

 

 

5.0

 

 

 

 

RESISTIVE INDUCTIVE LOADS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F

& 3

F

 

 

 

 

 

 

 

 

SINK WITH LENGTHS

 

 

 

 

 

 

 

CAPACITANCE LOADS ± 1

 

 

 

 

 

3/8º

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I(pk) = 5 Iavg

 

16

 

 

 

 

 

AS SHOWN

 

 

 

4.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I(pk) = 10 Iavg

 

12

 

 

5/8º

 

 

 

 

 

 

 

 

3.0

 

 

 

 

 

 

 

I(pk) = 20 Iavg

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RθJA = 40°C/W

 

 

 

 

 

 

 

 

 

8.0

 

 

 

 

 

 

 

 

 

 

 

2.0

 

 

 

 

f = 60 Hz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SEE NOTE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.0

 

 

 

 

 

 

 

 

 

 

 

1.0

 

 

6F (IPK/IAVE = 6.28)

 

 

 

 

 

 

 

F(AV)

 

 

 

 

 

 

 

 

 

 

 

F(AV)

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

I

20

40

60

80

100

120

140

160

180

200

I

 

20

40

60

80

100

120

140

160

180

200

 

 

0

 

 

0

 

 

 

 

 

TL, LEAD TEMPERATURE (°C)

 

 

 

 

 

 

 

 

TA, AMBIENT TEMPERATURE (°C)

 

 

 

 

 

Figure 5. Maximum Current Ratings

Figure 6. Maximum Current Ratings

 

32

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(WATTS)

 

CAPACITANCE

LOADS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

28

 

 

I(pk)

= 5 Iavg

 

 

 

 

 

 

 

 

6F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DISSIPATION

24

 

 

 

10 Iavg

 

 

 

 

 

 

1

F

& 3

F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20 Iavg

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

, POWER

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.0

 

 

 

 

 

 

 

RESISTIVE

± INDUCTIVE

LOADS

 

F(AV)

4.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.0

8.0

12

16

20

24

28

32

 

0

IF(AV), AVERAGE FORWARD CURRENT (AMPS)

Figure 7. Power Dissipation

 

 

40

 

 

 

 

 

 

 

 

 

 

35

SINGLE LEAD TO HEAT SINK,

 

 

 

 

 

RESISTANCE,

C/W)

INSIGNIFICANT HEAT FLOW

 

 

 

 

 

 

 

 

 

 

 

30

THROUGH OTHER LEAD

 

 

 

 

 

°

 

 

 

 

 

 

 

 

25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

, THERMAL

 

20

 

 

 

 

 

 

 

 

 

15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

JL

10

 

 

 

 

 

 

 

 

θ JUNCTION±TO±LEAD(

 

 

 

 

BOTH LEADS TO HEAT

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

5.0

 

 

 

 

SINK, EQUAL LENGTH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

0

1/8

1/4

3/8

1/2

5/8

3/4

7/8

1.0

L, LEAD LENGTH (INCHES)

Figure 8. Steady State Thermal Resistance

NOTES

THERMAL CIRCUIT MODEL

(For Heat Conduction Through The Leads)

 

 

 

RθS(A)

 

RθL(A)

 

RθJ(A)

 

 

RθJ(K)

 

RθL(K)

 

RθS(K)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TA(A)

 

 

 

 

 

 

 

 

 

 

 

TA(K)

 

 

 

 

 

 

 

 

 

 

 

 

PF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TL(A)

T

C(A)

TJ

 

 

T

C(K)

T

L(K)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Use of the above model permits junction to lead thermal resistance for any mounting configuration to be found. Lowest values occur when one side of the rectifier is brought as close as possible to the heat sink as shown below. Terms in the model signify:

TA = Ambient Temperature

TC = Case Temperature

TL = Lead Temperature

TJ = Junction Temperature

RqS = Thermal Resistance, Heat Sink to Ambient

RqL = Thermal Resistance, Lead to Heat Sink

RqJ = Thermal Resistance, Junction to Case

PF = Power Dissipation

(Subscripts A and K refer to anode and cathode sides, respectively.)

Values for thermal resistance components are:

RqL = 40°C/W/in. Typically and 44°C/W/in Maximum.

RqJ = 2°C/W typically and 4°C/W Maximum.

Since RqJ is so low, measurements of the case temperature, TC, will be approximately equal to junction temperature in practical lead mounted applications. When used as a 60 Hz rectifierm the slow thermal response

holds TJ(PK) close to TJ(AVG). Therefore maximum lead temperature may be found from: TL = 175°±RθJL PF. PF may be found from Figure 7.

The recommended method of mounting to a P.C. board is shown on the sketch, where RθJA is approximately 25°C/W for a 1±1/2º x 1±1/2º copper surface area. Values of 40°C/W are typical for mounting to terminal strips or P.C. boards where available surface area is small.

Board Ground Plane

Recommended mounting for half wave circuit

Rectifier Device Data

3

MR750

MR751

MR752

MR754

MR756

MR758

 

MR760

 

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

 

 

30

 

 

 

 

 

 

 

 

 

 

 

(%)

70

 

 

 

 

 

 

 

T

= 25°C

 

s)

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J

 

 

 

(

 

 

 

 

 

 

 

 

 

 

 

 

RELATIVE EFFICIENCY

 

 

 

 

 

 

 

 

 

 

 

 

, REVERSE RECOVERY TIME

10

 

 

 

 

 

 

 

TJ = 25°C

 

 

50

 

 

 

TJ = 175°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.0

 

IF = 5 A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CURRENT INPUT WAVEFORM

 

 

 

 

 

 

5.0

 

 

3 A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30

 

 

 

 

 

 

 

 

 

 

 

3.0

 

 

IF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.0

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rr

 

 

 

trr

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

7.0

10

20

30

 

50

 

 

 

1.0

 

 

 

 

0.7

1.0

2.0

3.0

5.0

 

 

 

1.0

2.0

3.0

5.0

 

70

100

 

 

0.1

0.2

0.3

0.5

7.0

10

 

 

 

REPETITION FREQUENCY (kHz)

 

 

 

 

 

 

 

IR/IF, RATIO OF REVERSE TO FORWARD CURRENT

 

 

Figure 9. Rectification Efficiency

Figure 10. Reverse Recovery Time

 

1000

 

 

 

 

 

 

 

 

 

 

1.0

 

700

 

 

 

 

 

 

 

 

 

s)

 

 

500

 

 

 

 

 

 

 

 

 

0.7

 

 

 

 

 

 

 

 

TJ = 25°C

 

m

 

 

 

 

 

 

 

 

 

 

(

 

 

300

 

 

 

 

 

 

 

 

TIME

 

(pF)

 

 

 

 

 

 

 

 

 

0.5

200

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C, CAPACITANCE

 

 

 

 

 

 

 

 

 

FORWARD RECOVERY

 

100

 

 

 

 

 

 

 

 

 

0.3

70

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50

 

 

 

 

 

 

 

 

 

0.2

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

fr

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

10

 

 

5.0

7.0

10

20

30

50

70

100

0.1

 

1.0

2.0

3.0

 

uf

 

 

TJ = 25°C

 

 

 

 

 

 

 

tfr

ufr

 

 

 

 

 

 

 

 

ufr = 1.0 V

 

 

 

 

 

ufr = 2.0 V

 

1.0

2.0

3.0

5.0

7.0

10

VR, REVERSE VOLTAGE (VOLTS)

Figure 11. Junction Capacitance

RS

 

RL

VO

Figure 13. Single±Phase Half±Wave

Rectifier Circuit

The rectification efficiency factor σ shown in Figure 9 was calculated using the formula:

V2o(dc)

(1)

σ + P(dc) RL . V2o(dc) .

P(rms) + V2o(rms) 100% + V2o(ac) ) V2o(dc) 100%

RL

For a sine wave input Vm sin (wt) to the diode, assumed lossless, the maximum theoretical efficiency factor becomes:

V2m

p2RL

4

 

 

σ(sine) + V2m .100% +

.100% + 40.6%

(2)

π2

4RL

IF, FORWARD PULSE CURRENT (AMP)

Figure 12. Forward Recovery Time

For a square wave input of amplitude Vm, the efficiency factor becomes:

 

 

 

V2m

 

 

σ

 

 

2RL .

 

 

+

 

 

 

100% + 50%

(3)

(square)

2

m

 

 

V

 

 

RL

(A full wave circuit has twice these efficiencies)

As the frequency of the input signal is increased, the reverse recovery time of the diode (Figure 10) becomes significant, resulting in an increasing ac voltage component across RL which is opposite in polarity to the forward current, thereby reducing the value of the efficiency factor σ, as shown on Figure 9.

It should be emphasized that Figure 9 shows waveform efficiency only; it does not provide a measure of diode losses. Data was obtained by measuring the ac component of Vo with a true rms ac voltmeter and the dc component with a dc voltmeter. The data was used in Equation 1 to obtain points for Figure 9.

4

Rectifier Device Data

MR750 MR751 MR752 MR754 MR756 MR758 MR760

PACKAGE DIMENSIONS

A

D

NOTES:

 

 

 

 

 

 

 

 

 

1

1. CATHODE SYMBOL ON PACKAGE.

 

 

 

 

 

 

K

 

MILLIMETERS

INCHES

DIM

MIN

MAX

MIN

MAX

 

A

8.43

8.69

0.332

0.342

 

B

5.94

6.25

0.234

0.246

 

D

1.27

1.35

0.050

0.053

 

E

25.15

25.65

0.990

1.010

 

B

 

 

 

 

 

STYLE 1:

 

 

 

K

PIN 1. CATHODE

 

 

 

2. ANODE

 

 

 

2

 

 

 

 

 

CASE 194±04

ISSUE F

Rectifier Device Data

5

MR750 MR751 MR752 MR754 MR756 MR758 MR760

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. ªTypicalº parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including ªTypicalsº must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

 

 

Mfax is a trademark of Motorola, Inc.

How to reach us:

 

 

USA / EUROPE / Locations Not Listed: Motorola Literature Distribution;

JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4±32±1,

P.O. Box 5405, Denver, Colorado 80217. 1±303±675±2140 or 1±800±441±2447

Nishi±Gotanda, Shinagawa±ku, Tokyo 141, Japan. 81±3±5487±8488

Customer Focus Center: 1±800±521±6274

 

Mfax : RMFAX0@email.sps.mot.com

± TOUCHTONE 1±602±244±6609

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,

Motorola Fax Back System

± US & Canada ONLY 1±800±774±1848

51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852±26629298

 

± http://sps.motorola.com/mfax/

 

HOME PAGE: http://motorola.com/sps/

 

 

6

CODELINE TO BE PLACED HERE

Rectifier Device Data

 

MR750/D

Соседние файлы в папке diod