MOTOROLA
SEMICONDUCTOR TECHNICAL DATA
Order this document by MUR3020WT/D
SWITCHMODE Power Rectifiers
. . . designed for use in switching power supplies, inverters and as free wheeling diodes, these state±of±the±art devices have the following features:
•Ultrafast 35 and 60 Nanosecond Recovery Time
•175°C Operating Junction Temperature
•Popular TO±247 Package
•High Voltage Capability to 600 Volts
•Low Forward Drop
•Low Leakage Specified @ 150°C Case Temperature
•Current Derating Specified @ Both Case and Ambient Temperatures
•Epoxy Meets UL94, VO @ 1/8″
•High Temperature Glass Passivated Junction
Mechanical Characteristics |
|
|
|
|
|
|
• Case: Epoxy, Molded |
1 |
|
|
|
|
|
• |
Weight: 4.3 grams (approximately) |
|
|
|
2, 4 |
|
|
|
|
|
|||
• |
Finish: All External Surfaces Corrosion Resistant and Terminal |
3 |
|
|
|
|
|
|
|
|
|||
|
|
|
|
|||
|
Leads are Readily Solderable |
|
|
|
|
|
|
|
|
|
|
||
•Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
•Shipped 30 units per plastic tube
•Marking: U3020, U3040, U3060
MUR3020WT
MUR3040WT
MUR3060WT
Motorola Preferred Devices
ULTRAFAST RECTIFIERS
30 AMPERES
200±400±600 VOLTS
1 

2 3
CASE 340K±01
TO±247AE
MAXIMUM RATINGS, PER LEG
Rating |
Symbol |
MUR3020WT |
MUR3040WT |
MUR3060WT |
Unit |
||
|
|
|
|
|
|
|
|
Peak Repetitive Reverse Voltage |
VRRM |
200 |
|
400 |
|
600 |
Volts |
Working Peak Reverse Voltage |
VRWM |
|
|
|
|
|
|
DC Blocking Voltage |
VR |
|
|
|
|
|
|
Average Rectified Forward Current @ 145°C |
IF(AV) |
|
|
15 |
|
|
Amps |
Total Device |
|
|
|
30 |
|
|
|
|
|
|
|
|
|
|
|
Peak Repetitive Surge Current |
IFM |
|
|
30 |
|
|
Amps |
(Rated VR, Square Wave, 20 kHz, TC = 145°C) |
|
|
|
|
|
|
|
Nonrepetitive Peak Surge Current |
IFSM |
200 |
|
150 |
|
Amps |
|
(Surge applied at rated load conditions, |
|
|
|
|
|
|
|
halfwave, single phase, 60 Hz) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Operating Junction and Storage Temperature |
TJ, Tstg |
|
|
± 65 to +175 |
|
°C |
|
THERMAL CHARACTERISTICS, PER LEG |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Maximum Thermal Resistance Ð Junction to Case |
RθJC |
|
|
1.5 |
|
|
°C/W |
Ð Junction to Ambient |
RθJA |
|
|
40 |
|
|
|
ELECTRICAL CHARACTERISTICS, PER LEG |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Maximum Instantaneous Forward Voltage (1) |
VF |
|
|
|
|
|
Volts |
(IF = 15 Amp, TC = 150°C) |
|
0.85 |
|
1.12 |
|
1.4 |
|
(IF = 15 Amp, TC = 25°C) |
|
1.05 |
|
1.25 |
|
1.7 |
|
Maximum Instantaneous Reverse Current (1) |
iR |
|
|
|
|
|
μA |
(Rated DC Voltage, TJ = 150°C) |
|
500 |
|
|
1000 |
|
|
(Rated DC Voltage, TJ = 25°C) |
|
10 |
|
|
10 |
|
|
Maximum Reverse Recovery Time |
trr |
35 |
|
60 |
|
ns |
|
(iF = 1.0 A, di/dt = 50 Amps/μs) |
|
|
|
|
|
|
|
(1) Pulse Test: Pulse Width = 300 μs, Duty Cycle ≤ 2.0%. |
|
|
|
|
|
|
|
SWITCHMODE is a trademark of Motorola, Inc.
Preferred devices are Motorola recommended choices for future use and best overall value.
Rev 2
Rectifier Device Data
Motorola, Inc. 1996
MUR3020WT |
MUR3040WT |
MUR3060WT |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
100 |
|
|
|
TJ = 150°C |
|
|
|
|
100 |
|
|
|
|
|
|
|
TJ = 150°C |
|
|||
|
|
|
|
|
° |
|
|
|
|
50 |
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
100 C |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25°C |
|
A) |
|
|
20 |
|
|
|
|
|
|
|
100°C |
|
|
|
50 |
|
|
|
|
|
|
|
|
10 |
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
μ |
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
( |
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CURRENT |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
20 |
|
|
|
|
|
|
|
, REVERSE |
|
|
0.5 |
|
|
|
|
|
|
|
25°C |
|
|
(AMPS) |
|
|
|
|
|
|
|
|
|
|
0.2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.1 |
|
|
|
|
|
|
|
|
|
|
||
10 |
|
|
|
|
|
|
|
R |
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
I |
0.05 |
|
|
|
|
|
|
|
|
|
|
||||
CURRENT |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
0.02 |
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
0.01 |
20 |
40 |
60 |
80 |
100 |
120 |
140 |
160 |
180 |
200 |
|||
5 |
|
|
|
|
|
|
|
|
|
|
0 |
|||||||||||
FORWARD |
|
|
|
|
|
|
|
|
|
|
|
|
VR, REVERSE VOLTAGE (VOLTS) |
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
3 |
|
|
|
|
|
|
|
*The curves shown are typical for the highest voltage device in the voltage grouping. |
||||||||||||||
|
|
|
|
|
|
|
Typical reverse current for lower voltage selections can be estimated from these same |
|||||||||||||||
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
curves if VR is sufficiently below rated VR. |
|
|
|
|
|
|
||||||||
, INSTANTANEOUS |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
Figure 2. Typical Reverse Current (Per Leg)* |
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
1 |
|
|
|
|
|
|
|
|
(AMPS) |
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
14 |
|
|
|
|
|
|
|
|
|
|
||
F |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
i |
|
|
|
|
|
|
|
|
|
CURRENT |
|
12 |
|
|
|
|
dc |
|
|
|
|
|
0.5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
FORWARD |
|
|
|
SQUARE WAVE |
|
|
|
|
|
|||
|
0.3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
0.2 |
|
|
|
|
|
|
|
|
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
, AVERAGE |
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
4 |
|
RATED VOLTAGE APPLIED |
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
0.1 |
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
0.4 |
0.6 |
0.8 |
1 |
1.2 |
1.4 |
1.6 |
|
F(AV) |
|
|
|
|
|
|
|
|
|
|
|||
|
0.2 |
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
vF, INSTANTANEOUS VOLTAGE (VOLTS) |
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
I |
|
|
150 |
|
|
160 |
|
170 |
|
180 |
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
|
|
|
|
|||||
|
|
Figure 1. Typical Forward Voltage (Per Leg) |
|
|
|
|
|
|
|
TC, CASE TEMPERATURE (°C) |
|
|
|
|||||||||
Figure 3. Current Derating, Case (Per Leg)
I F(AV) , AVERAGE FORWARD CURRENT (AMPS)
14
12
10
8
6
4
2
0
|
|
|
|
|
|
|
|
|
|
|
(WATTS) |
14 |
|
|
|
|
|
|
|
IAV |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
|
|
|
|
|
|
IPK = π |
|
|
|
|
dc |
|
|
|
|
|
|
|
|
DISSIPATION |
|
|
|
|
|
(RESISTIVE LOAD) |
|
|
|||
|
|
|
|
|
RθJA = 15°C/W AS OBTAINED |
|
12 |
|
|
|
|
IPK |
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
USING A SMALL FINNED |
|
|
|
|
(CAPACITIVE LOAD) |
= 5 |
|
|
|
dc |
|||||||
|
|
|
|
|
HEAT SINK. |
|
|
|
|
|
|
|
|
|
|
I |
|
|
|
|
||
|
SQUARE WAVE |
|
|
|
|
|
|
|
10 |
|
|
|
|
AV |
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
POWER |
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
dc |
|
|
|
|
|
|
|
|
|
8 |
|
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RθJA |
= 40°C/W |
|
|
|
|
|
|
|
AVERAGE, |
2 |
|
|
|
|
|
|
|
SQUARE WAVE |
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
SQUARE WAVE |
|
|
|
|
|
|
|
|
|
4 |
|
|
|
|
|
|
TJ = 125°C |
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
AS OBTAINED IN FREE AIR |
|
|
|
|
|
|
F(AV) |
0 |
|
|
|
|
|
|
|
|
|
|
|||
|
WITH NO HEAT SINK. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
0 |
20 |
40 |
60 |
80 |
100 |
120 |
140 |
160 |
180 |
200 |
P |
|
0 |
2 |
4 |
6 |
8 |
10 |
12 |
14 |
16 |
|
|
|
|
TA, AMBIENT TEMPERATURE (°C) |
|
|
|
|
|
|
|
IF(AV), AVERAGE FORWARD CURRENT (AMPS) |
|
|
|||||||||
Figure 4. Current Derating, Ambient (Per Leg) |
Figure 5. Power Dissipation (Per Leg) |
2 |
Rectifier Device Data |
|
|
|
|
|
|
|
|
|
|
|
|
MUR3020WT |
MUR3040WT |
MUR3060WT |
||||||||
|
100 |
|
|
|
|
|
|
|
|
|
100 |
|
|
|
|
|
|
|
|
TJ = 150°C |
||
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
|
|
|
|
|
|
μ A) |
|
|
20 |
|
|
|
|
|
|
|
100°C |
|
|
|
|
|
|
|
|
100°C |
|
|
|
10 |
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
° |
( |
|
|
5 |
|
|
|
|
|
|
|
25°C |
|
||
|
|
|
|
|
TJ = 150°C |
|
CURRENT |
|
|
|
|
|
|
|
|
|
|
|||||
|
30 |
|
|
|
|
25 C |
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
20 |
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
, REVERSE |
|
|
0.5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
(AMPS) |
|
|
|
|
|
|
|
|
|
|
0.2 |
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
|
|
|
|
|
|
0.1 |
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
R |
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
I |
0.05 |
|
|
|
|
|
|
|
|
|
|
|||
CURRENT |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
0.02 |
|
|
|
|
|
|
|
|
|
|
|||
5 |
|
|
|
|
|
|
|
|
0.01 |
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
0 |
50 |
100 |
150 |
200 |
250 |
300 |
350 |
400 |
450 |
500 |
||
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
FORWARD |
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
VR, REVERSE VOLTAGE (VOLTS) |
|
|
|||||
|
|
|
|
|
|
|
*The curves shown are typical for the highest voltage device in the voltage grouping. |
|||||||||||||||
|
|
|
|
|
|
|
|
|||||||||||||||
2 |
|
|
|
|
|
|
|
Typical reverse current for lower voltage selections can be estimated from these same |
||||||||||||||
|
|
|
|
|
|
|
curves if VR is sufficiently below rated VR. |
|
|
|
|
|
|
|||||||||
, INSTANTANEOUS |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
Figure 7. Typical Reverse Current (Per Leg)* |
|
|||||||||
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(AMPS) |
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
|
|
|
|
|
|
|
|
|
||
F |
0.5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
i |
|
|
|
|
|
|
|
|
CURRENT |
|
|
|
|
|
|
dc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
0.3 |
|
|
|
|
|
|
|
|
|
10 |
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
FORWARD |
|
|
|
SQUARE WAVE |
|
|
|
|
|
|||
|
0.2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
, AVERAGE |
|
|
|
|
|
|
|
|
|
|
|
|
|
0.1 |
0.4 |
0.6 |
0.8 |
1 |
1.2 |
1.4 |
1.6 |
|
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
0.2 |
|
|
|
RATED VOLTAGE APPLIED |
|
|
|
|
|||||||||||||
|
|
|
vF, INSTANTANEOUS VOLTAGE (VOLTS) |
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
F(AV) |
|
|
|
|
|
|
|
|
|
|
||
|
|
Figure 6. Typical Forward Voltage (Per Leg) |
|
0 |
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
I |
|
|
|
150 |
|
160 |
|
|
170 |
|
180 |
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
TC, CASE TEMPERATURE (°C) |
|
|
|||||
Figure 8. Current Derating, Case (Per Leg)
I F(AV) , AVERAGE FORWARD CURRENT (AMPS)
14 |
|
|
|
|
|
|
|
|
|
|
(WATTS) |
16 |
|
|
|
|
|
IAV |
|
|
|
12 |
|
|
|
|
|
|
|
|
|
|
14 |
|
|
|
|
|
|
|
|
||
|
|
dc |
|
|
|
|
|
|
|
|
|
|
|
(RESISTIVE±INDUCTIVE LOAD) |
IPK = π |
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
° |
|
|
|
|
DISSIPATION |
|
|
(CAPACITIVE LOAD) |
IPK = 5 |
|
|
|
|
dc |
|
|
|
|
|
|
RθJA = 15 C/W AS OBTAINED |
|
12 |
|
|
|
IAV |
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
10 |
|
|
|
|
USING A SMALL FINNED |
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
|
|
|||||
|
|
|
|
|
HEAT SINK. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
SQUARE WAVE |
|
|
|
|
|
|
|
10 |
|
|
|
|
|
|
|
|
|
|||
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
|
|
SQUARE WAVE |
|
||
|
|
|
|
|
|
|
|
|
|
|
POWER |
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
6 |
|
|
|
|
|
|
|
|||
6 |
|
dc |
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AVERAGE, |
|
|
|
|
|
|
|
|
|
|
||
2 |
RθJA = 40°C/W |
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|||
4 |
SQUARE WAVE |
|
|
|
|
|
|
|
|
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
TJ = 125°C |
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
0 |
AS OBTAINED IN FREE AIR |
|
|
|
|
|
|
F(AV) |
0 |
|
|
|
|
|
|
|
|
|
|||
WITH NO HEAT SINK. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
0 |
20 |
40 |
60 |
80 |
100 |
120 |
140 |
160 |
180 |
200 |
P |
|
0 |
2 |
4 |
6 |
8 |
10 |
12 |
14 |
16 |
|
|
|
TA, AMBIENT TEMPERATURE (°C) |
|
|
|
|
|
|
I |
, AVERAGE FORWARD CURRENT (AMPS) |
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F(AV) |
|
|
|
|
|
|
Figure 9. Current Derating, Ambient (Per Leg) |
Figure 10. Power Dissipation (Per Leg) |
Rectifier Device Data |
3 |
MUR3020WT |
MUR3040WT |
MUR3060WT |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
100 |
|
|
|
|
|
|
|
|
200 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
μ A) |
50 |
|
|
|
|
TJ = 150°C |
|
|
|
||
|
50 |
|
|
|
|
|
|
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
( |
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
TJ = 150°C |
|
CURRENT |
|
|
|
|
|
100°C |
|
|
|
||
|
|
|
|
|
|
|
|
5 |
|
|
|
|
|
|
|
|
||||
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
100°C |
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
||
|
20 |
|
|
|
|
|
|
REVERSE |
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
0.5 |
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
25°C |
|
|
|
|
|
|
25°C |
|
|
|
|||
(AMPS) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
0.2 |
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
, |
0.1 |
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
|
|
|
|
R |
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
I |
|
|
|
|
|
|
|
|
|
|
|||
CURRENT |
|
|
|
|
|
|
|
|
0.05 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.02 |
200 |
250 |
300 |
350 |
400 |
450 |
500 |
550 |
600 |
650 |
||
5 |
|
|
|
|
|
|
|
|
150 |
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
FORWARD |
|
|
|
|
|
|
|
|
|
|
|
VR, REVERSE VOLTAGE (VOLTS) |
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
3 |
|
|
|
|
|
|
|
*The curves shown are typical for the highest voltage device in the voltage grouping. |
||||||||||||
|
|
|
|
|
|
|
Typical reverse current for lower voltage selections can be estimated from these same |
|||||||||||||
|
|
|
|
|
|
|
|
curves if VR is sufficiently below rated VR. |
|
|
|
|
|
|
||||||
, INSTANTANEOUS |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
Figure 12. Typical Reverse Current (Per Leg)* |
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
||||||||||
1 |
|
|
|
|
|
|
|
(AMPS) |
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
14 |
|
|
|
|
|
|
|
|
|
|
||
F |
|
|
|
|
|
|
|
|
|
|
|
dc |
|
|
|
|
|
|
||
i |
|
|
|
|
|
|
|
|
CURRENT |
|
|
|
|
|
|
|
|
|
|
|
0.5 |
|
|
|
|
|
|
|
12 |
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
10 |
|
SQUARE WAVE |
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
FORWARD |
|
|
|
|
|
|
|
|
|
|
|
|
0.3 |
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
0.2 |
|
|
|
|
|
|
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
, AVERAGE |
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RATED VOLTAGE APPLIED |
|
|
|
|||||
|
0.1 |
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
0.4 |
0.6 |
0.8 |
1 |
1.2 |
1.4 |
1.6 |
F(AV) |
|
|
|
|
|
|
|
|
|
|
||
|
0.2 |
0 |
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
vF, INSTANTANEOUS VOLTAGE (VOLTS) |
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
I |
140 |
|
150 |
|
160 |
|
|
170 |
|
180 |
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
Figure 11. Typical Forward Voltage (Per Leg) |
|
|
|
|
|
TC, CASE TEMPERATURE (°C) |
|
|
||||||||||
Figure 13. Current Derating, Case (Per Leg)
(AMPS)CURRENTFORWARDAVERAGE, |
10 |
RθJA |
= 60°C/W |
|
|
|
= 16°C/W AS OBTAINED |
|
(WATTS)DISSIPATIONPOWER |
16 |
|
(CAPACITIVE LOAD) |
IPK = 5 |
|
|
dc |
|
|||||
|
|
|
R |
|
|
|
|
|
|
|||||||||||||
|
9 |
|
dc |
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
θJA |
|
|
|
|
|
|
14 |
|
|
|
|
IAV |
|
|
|
|
|
|
8 |
|
|
|
|
FROM A SMALL TO±220 |
|
|
|
|
|
|
10 |
|
|
|
|
|||||
|
|
|
|
|
HEAT SINK. |
|
|
|
|
|
12 |
|
|
|
|
|
|
|
|
|||
|
7 |
SQUARE WAVE |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
6 |
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
20 |
|
|
|
SQUARE WAVE |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
4 |
|
dc |
|
|
|
|
|
|
|
|
|
6 |
|
|
|
|
(RESISTIVE±INDUCTIVE LOAD) |
|
|||
F(AV) |
|
|
|
|
|
|
|
|
|
|
AVERAGE, |
|
|
|
|
|
||||||
3 |
WITH NO HEAT SINK. |
|
|
|
|
|
|
|
4 |
|
|
|
|
|
|
IPK = π |
|
|
||||
|
2 |
SQUARE WAVE |
|
|
|
|
|
|
|
|
|
|
|
|
|
° |
|
IAV |
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
TJ = 125 C |
|
|
|
|
|
|
1 |
AS OBTAINED IN FREE AIR |
|
|
|
|
|
|
F(AV) |
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
I |
0 |
20 |
40 |
60 |
80 |
100 |
120 |
140 |
160 |
180 |
200 |
0 |
0 |
2 |
4 |
6 |
8 |
10 |
12 |
14 |
16 |
|
|
0 |
P |
|
|||||||||||||||||||
|
|
|
TA, AMBIENT TEMPERATURE (°C) |
|
|
|
|
|
|
|
IF(AV), AVERAGE FORWARD CURRENT (AMPS) |
|
|
|||||||||
Figure 14. Current Derating, Ambient (Per Leg) |
Figure 15. Power Dissipation (Per Leg) |
4 |
Rectifier Device Data |
|
|
|
|
|
|
|
|
|
|
MUR3020WT |
MUR3040WT |
MUR3060WT |
|||||
(NORMALIZED) |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.5 |
|
D = 0.5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
RESISTANCE |
0.2 |
|
0.1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
0.1 |
|
|
|
|
|
|
|
|
|
|
ZθJC(t) = r(t) RθJC |
|
|
|
|||
|
0.05 |
|
|
|
|
|
P(pk) |
|
|
RθJC = 1.5°C/W MAX |
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|||||||
THERMAL |
0.05 |
|
0.01 |
|
|
|
|
|
|
t1 |
|
D CURVES APPLY FOR POWER |
|
||||
|
|
|
|
|
|
|
|
|
PULSE TRAIN SHOWN |
|
|
||||||
|
|
|
|
|
|
|
|
|
t2 |
|
|
|
|||||
|
|
SINGLE PULSE |
|
|
|
|
|
|
READ TIME AT T1 |
|
|
|
|||||
|
|
|
|
|
|
DUTY CYCLE, D = t /t |
TJ(pk) ± TC = P(pk) ZθJC(t) |
|
|
||||||||
TRANSIENT |
0.02 |
|
|
|
|
|
|
|
|
|
1 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
0.01 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
0.01 |
0.02 |
0.05 |
0.1 |
0.2 |
0.5 |
1 |
2 |
5 |
10 |
20 |
50 |
100 |
200 |
500 |
1K |
||
r(t), |
|||||||||||||||||
|
|
|
|
|
|
|
|
t, TIME (ms) |
|
|
|
|
|
|
|
||
Figure 16. Thermal Response
|
1K |
|
|
|
|
|
|
|
500 |
|
|
|
|
TJ = 25°C |
|
(pF) |
200 |
|
|
|
|
|
|
C, CAPACITANCE |
100 |
|
|
|
|
|
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
|
|
|
|
|
|
10 |
2 |
5 |
10 |
20 |
50 |
100 |
|
1 |
VR, REVERSE VOLTAGE (VOLTS)
Figure 17. Typical Capacitance (Per Leg)
Rectifier Device Data |
5 |
MUR3020WT MUR3040WT |
|
MUR3060WT |
|
|
|
|
|
|||
|
|
|
|
|
PACKAGE DIMENSIONS |
|
|
|
|
|
|
±Q± |
|
|
±T± |
|
|
|
|
|
|
|
|
|
E |
|
|
|
|
|
||
0.25 (0.010) M T |
B |
M |
±B± |
NOTES: |
|
|
|
|
||
C |
|
|
|
|
||||||
|
|
|
|
|
1. DIMENSIONING AND TOLERANCING PER ANSI |
|||||
|
|
|
|
|
4 |
Y14.5M, 1982. |
|
|
|
|
|
|
U |
|
|
L |
2. CONTROLLING DIMENSION: MILLIMETER. |
||||
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
MILLIMETERS |
INCHES |
||
|
A |
|
|
|
|
DIM |
MIN |
MAX |
MIN |
MAX |
|
|
|
|
R |
A |
19.7 |
20.3 |
0.776 |
0.799 |
|
|
|
|
|
|
B |
15.3 |
15.9 |
0.602 |
0.626 |
|
|
|
|
|
|
|
|||||
|
|
1 |
2 |
3 |
|
C |
4.7 |
5.3 |
0.185 |
0.209 |
|
|
|
D |
1.0 |
1.4 |
0.039 |
0.055 |
|||
|
|
|
|
|
|
|||||
|
|
|
|
|
|
E |
1.27 REF |
0.050 REF |
||
|
|
|
|
|
±Y± |
F |
2.0 |
2.4 |
0.079 |
0.094 |
|
|
P |
|
|
G |
5.5 BSC |
0.216 BSC |
|||
|
K |
|
|
|
H |
2.2 |
2.6 |
0.087 |
0.102 |
|
|
|
|
|
|
||||||
|
|
|
|
|
J |
0.4 |
0.8 |
0.016 |
0.031 |
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
K |
14.2 |
14.8 |
0.559 |
0.583 |
|
|
|
|
|
|
L |
5.5 NOM |
0.217 NOM |
||
|
|
|
|
V |
H |
P |
3.7 |
4.3 |
0.146 |
0.169 |
|
|
F |
|
Q |
3.55 |
3.65 |
0.140 |
0.144 |
||
|
|
|
G |
J |
R |
5.0 NOM |
0.197 NOM |
|||
|
|
|
|
|||||||
|
|
D |
|
|
U |
5.5 BSC |
0.217 BSC |
|||
|
|
|
|
|
V |
3.0 |
3.4 |
0.118 |
0.134 |
|
0.25 (0.010) M |
Y |
Q S |
|
|
|
STYLE 2: |
|
|
|
|
|
|
|
|
|
|
PIN 1. ANODE 1 |
|
|
||
|
|
|
|
|
|
|
2. CATHODE(S) |
|
|
|
|
|
|
|
|
CASE 340K±01 |
|
3. ANODE 2 |
|
|
|
|
|
|
|
|
|
4. CATHODE(S) |
|
|
||
|
|
|
|
|
ISSUE O |
|
|
|
|
|
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. ªTypicalº parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including ªTypicalsº must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
|
Mfax is a trademark of Motorola, Inc. |
How to reach us: |
|
USA / EUROPE / Locations Not Listed: Motorola Literature Distribution; |
JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4±32±1, |
P.O. Box 5405, Denver, Colorado 80217. 303±675±2140 or 1±800±441±2447 |
Nishi±Gotanda, Shinagawa±ku, Tokyo 141, Japan. 81±3±5487±8488 |
Mfax : RMFAX0@email.sps.mot.com ± TOUCHTONE 602±244±6609 |
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, |
± US & Canada ONLY 1±800±774±1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852±26629298
INTERNET: http://motorola.com/sps
6 |
◊ |
MUR3020WT/D |
|
Rectifier Device Data |
