S E M I C O N D U C T O R HGTG40N60B3
PRELIMINARY
May 1995
70A, 600V, UFS Series N-Channel IGBT
Features
•70A, 600V at TC = +25oC
•Square Switching SOA Capability
•Typical Fall Time - 160ns at +150oC
•Short Circuit Rating
•Low Conduction Loss
Description
The HGTG40N60B3 is a MOS gated high voltage switching device combining the best features of MOSFETs and bipolar transistors. The device has the high input impedance of a MOSFET and the low on-state conduction loss of a bipolar transistor. The much lower on-state voltage drop varies only moderately between +25oC and +150oC.
The IGBT is ideal for many high voltage switching applications operating at moderate frequencies where low conduction losses are essential, such as: AC and DC motor controls, power supplies and drivers for solenoids, relays and contactors.
PACKAGING AVAILABILITY
PART NUMBER |
PACKAGE |
BRAND |
|
|
|
HGTG40N60B3 |
TO-247 |
G40N60B3 |
|
|
|
NOTE: When ordering, use the entire part number.
Formerly Developmental Type TA49052
Package
JEDEC STYLE TO-247
E
C
G
Terminal Diagram
N-CHANNEL ENHANCEMENT MODE
C
G
E
Absolute Maximum Ratings TC = +25oC, Unless Otherwise Specified |
|
|
|
|
||
|
|
|
|
|
HGTG40N60B3 |
UNITS |
Collector-Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |
. BVCES |
600 |
V |
|||
Collector-Gate Voltage, RGE = 1MΩ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |
. BVCGR |
600 |
V |
|||
Collector Current Continuous |
|
|
|
|
||
At TC = +25oC (Package Limited) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |
. . |
. IC25 |
70 |
A |
||
At T |
C |
= +110oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |
. . |
. I |
40 |
A |
|
|
|
C110 |
|
|
|
Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |
. . |
. . ICM |
330 |
A |
||
Gate-Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |
. . |
VGES |
±20 |
V |
||
Gate-Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |
. . |
VGEM |
±30 |
V |
||
Switching Safe Operating Area at TC = +150oC. . . . . . . . . . . . . . . . . . . . . . . . . . |
. . |
SSOA |
160A at 0.8 BVCES |
|
||
Power Dissipation Total at TC = +25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |
. . |
. . PD |
290 |
W |
||
Power Dissipation Derating TC > +25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |
. . |
. . . . . |
2.33 |
W/oC |
||
Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . |
T |
, T |
-40 to +150 |
oC |
||
|
|
|
J |
STG |
|
oC |
Maximum Lead Temperature for Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |
. . |
. . . TL |
260 |
|||
Short Circuit Withstand Time (Note 2) at VGE = 15V . . . . . . . . . . . . . . . . . . . . . . |
. . |
. . tSC |
2 |
μs |
||
Short Circuit Withstand Time (Note 2) at VGE = 10V . . . . . . . . . . . . . . . . . . . . . . |
. . |
. . tSC |
10 |
μs |
||
NOTE:
1.Repetitive Rating: Pulse width limited by maximum junction temperature.
2.VCE(PK) = 360V, TC = +125oC, RGE = 25Ω.
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper ESD Handling Procedures. |
File Number |
3943 |
|
Copyright © Harris Corporation 1995
9-3
Specifications HGTG40N60B3
Electrical Specifications TC = +25oC, Unless Otherwise Specified
|
|
|
|
|
|
|
|
|
|
|
LIMITS |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
PARAMETERS |
SYMBOL |
|
|
|
|
TEST CONDITIONS |
MIN |
TYP |
MAX |
UNITS |
|||
|
|
|
|
|
|
|
|
||||||
Collector-Emitter Breakdown Voltage |
BVCES |
ICE = 250μA, VGE = 0V |
|
600 |
- |
- |
V |
||||||
Collector-Emitter Leakage Current |
ICES |
VCE = BVCES |
TJ = +25oC |
- |
- |
250 |
µA |
||||||
|
|
VCE = BVCES |
TJ = +150oC |
- |
- |
7.5 |
mA |
||||||
Collector-Emitter Saturation Voltage |
V |
I |
CE |
= 40A |
T |
J |
= +25oC |
- |
1.4 |
2.0 |
V |
||
|
CE(SAT) |
|
|
|
|
|
|
|
|
||||
|
|
VGE = 15V |
|
|
|
|
|
|
|
||||
|
|
TJ = +150oC |
- |
1.5 |
2.3 |
V |
|||||||
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
||||||
Gate-Emitter Threshold Voltage |
VGE(TH) |
ICE = 250A, |
TJ = +25oC |
3.0 |
5 |
6.0 |
V |
||||||
|
|
VCE = VGE |
|
|
|
|
|
|
|
||||
Gate-Emitter Leakage Current |
IGES |
VGE = ±20V |
|
|
|
- |
- |
±300 |
nA |
||||
Latching Current |
I |
T |
J |
= +150oC |
|
|
|
160 |
- |
- |
A |
||
|
L |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VCE(PK) = 0.8 BVCES |
|
|
|
|
|
|
|||||
|
|
VGE = 15V |
|
|
|
|
|
|
|
||||
|
|
RG = 3Ω |
|
|
|
|
|
|
|
||||
|
|
L = 45μH |
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|||||||
Gate-Emitter Plateau Voltage |
VGEP |
ICE = 40A, VCE = 0.5 BVCES |
- |
8.0 |
- |
V |
|||||||
On-State Gate Charge |
QG(ON) |
ICE = 40A, |
VGE = 15V |
- |
240 |
320 |
nC |
||||||
|
|
VCE = 0.5 BVCES |
|
|
|
|
|
|
|
||||
|
|
VGE = 20V |
- |
350 |
450 |
nC |
|||||||
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
||||
Current Turn-On Delay Time |
tD(ON)I |
TJ = +150oC |
|
|
|
- |
50 |
- |
ns |
||||
|
|
ICE = 40A |
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|||||
Current Rise Time |
tRI |
VCE(PK) = 0.8 BVCES |
|
|
- |
40 |
- |
ns |
|||||
|
|
VGE = 15V |
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|||||
Current Turn-Off Delay Time |
tD(OFF)I |
RG = 3Ω |
|
|
|
- |
350 |
435 |
ns |
||||
|
|
L = 100μH |
|
|
|
|
|
|
|
||||
Current Fall Time |
tFI |
|
|
|
- |
160 |
200 |
ns |
|||||
|
|
|
|
|
|
|
|
||||||
Turn-On Energy |
EON |
|
|
|
|
|
|
|
|
- |
1400 |
- |
µJ |
Turn-Off Energy (Note 1) |
EOFF |
|
|
|
|
|
|
|
|
- |
3300 |
- |
µJ |
Thermal Resistance |
RθJC |
|
|
|
|
|
|
|
|
- |
- |
0.43 |
oC/W |
NOTE:
1.Turn-Off Energy Loss (EOFF) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero (ICE = 0A). The HGTG40N60B3 was tested per JEDEC standard No. 24-1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.
HARRIS SEMICONDUCTOR IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS:
4,364,073 |
4,417,385 |
4,430,792 |
4,443,931 |
4,466,176 |
4,516,143 |
4,532,534 |
4,567,641 |
4,587,713 |
4,598,461 |
4,605,948 |
4,618,872 |
4,620,211 |
4,631,564 |
4,639,754 |
4,639,762 |
4,641,162 |
4,644,637 |
4,682,195 |
4,684,413 |
4,694,313 |
4,717,679 |
4,743,952 |
4,783,690 |
4,794,432 |
4,801,986 |
4,803,533 |
4,809,045 |
4,809,047 |
4,810,665 |
4,823,176 |
4,837,606 |
4,860,080 |
4,883,767 |
4,888,627 |
4,890,143 |
4,901,127 |
4,904,609 |
4,933,740 |
4,963,951 |
4,969,027 |
|
|
|
|
|
|
|
9-4
|
|
|
|
|
|
|
|
HGTG40N60B3 |
|
|
|
|
|
|
|
|
|
|
|
||
Typical Performance Curves |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
μ |
|
|
|
|
|
PULSE DURATION = 250μs, DUTY CYCLE <0.5%, T |
= +25oC |
||||||||||
|
PULSE DURATION = 250 s, DUTY CYCLE <0.5%, VCE = 10V |
|
200 |
|
|
|
|
|
|
|
|
C |
|
|
|||||||
COLLECTOR-EMITTER CURRENT (A) |
200 |
|
|
|
|
|
|
|
,COLLECTOR-EMITTER CURRENT (A) |
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
|
|
|
|
|
|
180 |
|
|
|
|
VGE = 15V |
|
12V |
10V |
|
||||
160 |
|
|
|
|
|
|
|
160 |
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
140 |
|
|
|
|
|
|
|
140 |
|
|
|
|
|
|
|
|
9.5V |
|
|||
T |
|
= +150oC |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
120 |
C |
|
|
|
|
120 |
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9V |
|
|||||
100 |
|
|
|
|
|
|
|
100 |
|
|
|
|
|
|
|
|
|
||||
|
TC = +25oC |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
80 |
|
|
|
|
|
80 |
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8.5V |
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
60 |
|
TC = -40oC |
|
|
|
|
60 |
|
|
|
|
|
|
|
|
8.0V |
|
||||
40 |
|
|
|
|
|
40 |
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7.5V |
|
|||||
|
|
|
|
|
|
|
|
20 |
|
|
|
|
|
|
|
|
|
||||
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
, |
|
|
|
|
|
|
|
CE |
|
|
|
|
|
|
|
|
7.0V |
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
CE |
|
|
|
|
|
|
|
|
I |
|
|
|
|
|
|
|
|
|
|
|
|
I |
0 |
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
0 |
0.5 |
1 |
1.5 |
2 |
2.5 |
3 |
3.5 |
4 |
4.5 |
5 |
||
|
0 |
2 |
|
4 |
6 |
8 |
10 |
12 |
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
VGE, GATE-TO-EMITTER VOLTAGE (V) |
|
|
|
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) |
|
||||||||||||||
|
|
FIGURE 1. TRANSFER CHARACTERISTICS |
|
|
FIGURE 2. SATURATION CHARACTERISTICS |
|
|||||||||||||||
|
100 |
|
|
|
|
|
|
|
|
PULSE DURATION = 250μs, DUTY CYCLE <0.5%, VGE = 15V |
|||||||||||
|
|
|
|
|
|
|
|
(A) |
200 |
|
|
|
|
|
|
|
|
|
|
|
|
COLLECTOR CURRENT (A) |
90 |
DIE LIMIT |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-EMITTER CURRENT |
|
|
|
|
|
|
|
|
|
|
|
|
|||
80 |
|
|
|
|
|
VGE = 15V |
|
150 |
|
|
|
|
|
|
|
|
|
|
|
||
70 |
|
|
|
|
|
|
|
|
|
TC = -40oC |
|
|
TC = +25oC |
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
60 |
PACKAGE LIMIT |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
50 |
|
|
|
|
|
|
|
100 |
|
|
|
|
|
|
|
|
|
|
|
||
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
TC = +150oC |
|
|
|
|||
30 |
|
|
|
|
|
|
|
50 |
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
DC |
20 |
|
|
|
|
|
|
|
COLLECTOR, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CE |
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
CE |
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
I |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
25 |
50 |
|
75 |
|
100 |
125 |
150 |
|
0 |
|
1 |
|
|
|
2 |
|
3 |
|
|
4 |
|
|
|
|
|
|
|
o |
|
|
|
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) |
|
|||||||||
|
|
TC , CASE TEMPERATURE ( C) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
FIGURE 3. DC COLLECTOR CURRENT vs CASE TEMPERATURE |
|
FIGURE 4. COLLECTOR-EMITTER ON-STATE VOLTAGE |
|||||||||||||||||||
|
|
|
|
|
|
FREQUENCY = 1MHz |
|
600 |
|
IG(REF) = 4.06mA, RL = 7.5Ω, TC = +25oC |
|
||||||||||
|
|
|
|
|
|
|
|
|
(V) |
|
|
|
|
|
|
|
|
|
20 |
|
|
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
COLLECTOR - EMITTER VOLTAGE |
|
|
|
|
|
|
|
|
|
|
|
(V) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
12 |
|
|
|
|
|
|
|
450 |
|
|
|
|
|
|
|
|
|
15 |
VOLTAGE |
|
C, CAPACITANCE (nF) |
|
|
|
CISS |
|
|
|
|
|
|
BVCE = 600V |
|
|
|
|||||||
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
8 |
|
|
|
|
|
|
|
300 |
|
|
|
|
|
|
|
|
|
10 |
EMITTER |
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- |
||
4 |
|
|
|
|
|
|
|
150 |
|
|
|
|
|
BVCE = 400V |
|
5 |
, GATE |
||||
|
|
COSS |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
BVCE = 200V |
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
GE |
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V |
|||
|
|
|
|
CRSS |
|
|
|
, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CE |
|
|
|
|
|
|
|
|
|
|
|
|
||
|
0 |
5 |
|
10 |
|
15 |
20 |
25 |
V |
0 |
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
0 |
|
|
|
0 |
|
50 |
|
|
100 |
150 |
|
200 |
|
250 |
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) |
|
|
|
Q |
G |
, GATE CHARGE (nC) |
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
FIGURE 5. CAPACITANCE vs COLLECTOR-EMITTER VOLTAGE |
|
|
FIGURE 6. GATE CHARGE WAVEFORMS |
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
9-5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
HGTG40N60B3
Typical Performance Curves (Continued)
|
100 |
|
|
|
TJ = +150oC, RG = 3Ω, L = 100μH |
|||||
|
|
|
|
|
|
|
|
|
|
|
(ns) |
70 |
|
|
|
|
|
|
|
|
|
TIME |
50 |
|
|
|
|
|
|
|
|
|
DELAY |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
TURN-ON |
30 |
|
|
|
|
|
|
|
|
|
20 |
|
|
|
|
|
|
|
|
|
|
, |
|
|
|
|
|
|
|
|
|
|
D(ON)I |
|
|
|
|
|
|
|
|
|
|
t |
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
|
|
|
|
|
|
|
10 |
20 |
30 |
40 |
50 |
60 |
70 |
80 |
90 |
100 |
|
|
|
ICE , COLLECTOR-EMITTER CURRENT (A) |
|
|
|||||
FIGURE 7. TURN-ON DELAY TIME AS A FUNCTION OF COLLECTOR-EMITTER CURRENT
|
100 |
|
|
|
TJ = +150oC, RG = 3Ω, L = 100μH |
|||||
|
|
|
|
|
|
|
|
|
|
|
(ns) |
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
TIME |
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RISE |
|
|
|
|
|
VCE(PK) = 480V, VGE = 15V |
|
|||
30 |
|
|
|
|
|
|
|
|
|
|
-ON |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
TURN |
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
, |
|
|
|
|
|
|
|
|
|
|
RI |
|
|
|
|
|
|
|
|
|
|
t |
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
|
|
|
|
|
|
|
10 |
20 |
30 |
40 |
50 |
60 |
70 |
80 |
90 |
100 |
|
|
|
ICE , COLLECTOR-EMITTER CURRENT (A) |
|
|
|||||
FIGURE 9. TURN-ON RISE TIME AS A FUNCTION OF COLLECTOR-EMITTER CURRENT
|
6 |
|
|
|
TJ = +150oC, RG = 3Ω, L = 100μH |
|||||
|
|
|
|
|
|
|
|
|
|
|
(mJ) |
5 |
|
|
|
|
|
|
|
|
|
LOSS |
|
|
|
|
|
|
|
|
|
|
4 |
|
|
|
|
|
|
|
|
|
|
-ON ENERGY |
|
|
|
|
|
|
|
|
|
|
|
VCE(PK) = 480V, VGE = 15V |
|
|
|
|
|||||
3 |
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
, TURN |
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
ON |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
E |
|
|
|
|
|
|
|
|
|
|
|
10 |
20 |
30 |
40 |
50 |
60 |
70 |
80 |
90 |
100 |
|
|
|
ICE , COLLECTOR-EMITTER CURRENT (A) |
|
|
|||||
FIGURE 11. TURN-ON ENERGY LOSS AS A FUNCTION OF
COLLECTOR-EMITTER CURRENT
|
400 |
|
|
|
TJ = +150oC, RG = 3Ω, L = 100μH |
|||||
|
|
|
|
|
|
|
|
|
|
|
(ns) |
|
|
|
|
|
|
|
|
|
|
TIME |
350 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
OFF DELAY |
300 |
|
|
|
|
|
|
|
|
|
|
|
VCE(PK) = 480V, VGE = 15V |
|
|
|
|
||||
- |
|
|
|
|
|
|
|
|
|
|
, TURN |
250 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D(OFF)I |
|
|
|
|
|
|
|
|
|
|
t |
|
|
|
|
|
|
|
|
|
|
|
200 |
|
|
|
|
|
|
|
|
|
|
10 |
20 |
30 |
40 |
50 |
60 |
70 |
80 |
90 |
100 |
|
|
|
ICE , COLLECTOR-EMITTER CURRENT (A) |
|
|
|||||
FIGURE 8. TURN-OFF DELAY TIME AS A FUNCTION OF
COLLECTOR-EMITTER CURRENT
TJ = +150oC, RG = 3Ω, L = 100μH
|
1000 |
|
|
|
|
|
|
|
|
|
|
|
|
|
500 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(ns) |
300 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
||
200 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
TIME |
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VCE(PK) = 480V, VGE = 15V |
|
|
|
||||||
, FALL |
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|||||||
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
||
FI |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
t |
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
60 |
80 |
|
100 |
||||||
|
20 |
|
|||||||||||
ICE , COLLECTOR-EMITTER CURRENT (A)
FIGURE 10. TURN-OFF FALL TIME AS A FUNCTION OF COLLECTOR-EMITTER CURRENT
|
10 |
|
|
|
TJ = +150oC, RG = 3Ω, L = 100μH |
|||||
|
|
|
|
|
|
|
|
|
|
|
(mJ) |
|
|
|
|
|
|
|
|
|
|
LOSS |
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ENERGY |
6 |
VCE(PK) = 480V, VGE = 15V |
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
, TURN-OFF |
4 |
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
OFF |
|
|
|
|
|
|
|
|
|
|
E |
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
10 |
20 |
30 |
40 |
50 |
60 |
70 |
80 |
90 |
100 |
|
|
|
ICE, COLLECTOR-EMITTER CURRENT (A) |
|
|
|||||
FIGURE 12. TURN-OFF ENERGY LOSS AS A FUNCTION OF
COLLECTOR-EMITTER CURRENT
9-6
|
|
|
|
|
|
|
|
HGTG40N60B3 |
|
|
|
|
|
|
|
|
|
|||
Typical Performance Curves (Continued) |
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
T = +150oC, T |
C |
= +75oC, V |
GE |
= +15V, R = 3Ω, L = 100μH |
|
|
|
T |
C |
= +150oC, V |
GE |
= 15V, R = 3Ω, L = 45μH |
||||||
|
200 |
J |
|
|
G |
|
|
|
200 |
|
|
|
|
|
G |
|
||||
|
|
|
|
|
|
|
|
|
-EMITTER CURRENT (A) |
|
|
|
|
|
|
|
|
|
||
, OPERATING FREQUENCY (kHz) |
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
|
|
|
|
|
|
|
|
||
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
20 |
|
|
|
|
|
|
|
|
120 |
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
10 |
fMAX1 = 0.05/(tD(OFF)I + tD(ON)I) |
|
|
|
80 |
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
5 |
fMAX2 = (PD - PC)/(EON + EOFF) |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
PD = ALLOWABLE DISSIPATION |
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
40 |
|
|
|
|
|
|
|
|
|
||||||||
|
PC = CONDUCTION DISSIPATION |
|
|
|
|
|
|
|
|
|
|
|
||||||||
MAX |
2 |
|
(DUTY FACTOR = 50%) |
|
|
|
COLLECTOR, |
|
|
|
|
|
|
|
|
|
|
|||
|
RθJC |
= 0.43oC/W |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
f |
|
|
|
|
|
|
CE |
0 |
|
|
|
|
|
|
|
|
|
|||
|
1 |
|
|
|
|
|
|
|
|
I |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
30 |
|
|
|
|
|
0 |
100 |
200 |
300 |
|
400 |
500 |
600 |
|||
|
10 |
20 |
|
50 |
70 |
100 |
|
|
||||||||||||
|
|
|
ICE, COLLECTOR-EMITTER CURRENT (A) |
|
|
|
VCE, COLLECTOR-EMITTER VOLTAGE (V) |
|
||||||||||||
FIGURE 13. OPERATING FREQUENCY AS A FUNCTION OF |
|
FIGURE 14. SWITCHING SAFE OPERATING AREA |
|
|||||||||||||||||
|
|
COLLECTOR-EMITTER CURRENT |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
THERMAL |
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
C/W) |
0.2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NORMALIZED |
o |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10-1 |
0.1 |
|
|
|
|
|
|
|
|
PD |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
RESPONSE( |
0.05 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t1 |
|
|
|
|
|
|
|
||
|
, |
|
|
|
|
|
|
|
|
|
|
|
|
|
t2 |
|
|
|
|
|
|
JC |
|
0.02 |
|
|
|
|
|
|
|
|
NOTES: |
|
|
|
|
|
|
|
|
|
θ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Z |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.01 |
|
|
|
SINGLE PULSE |
|
|
|
DUTY FACTOR, D = t1 /t2 |
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
10-2 |
|
|
|
|
|
|
|
|
|
PEAK TJ = (PD X ZθJC X RθJC) + TC |
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10-5 |
|
10-4 |
|
10-3 |
|
10-2 |
|
10-1 |
|
|
|
|
100 |
101 |
|
|||
|
|
|
|
|
|
|
|
t1 , RECTANGULAR PULSE DURATION (s) |
|
|
|
|
|
|
|
|
||||
|
|
|
FIGURE 15. IGBT NORMALIZED TRANSIENT THERMAL IMPEDANCE, JUNCTION TO CASE |
|
|
|||||||||||||||
Test Circuit and Waveforms |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
L = 100μH |
|
|
|
|
|
|
|
|
90% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
VGE |
|
|
|
|
|
|
|
10% |
|
|
|
|
|
|
|
|
|
RHRP3060 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EOFF |
EON |
|
|
|
|
|
RG = 3Ω |
|
|
|
|
|
|
VCE |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+ |
|
|
|
|
10% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VDD = 480V |
ICE |
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
- |
|
tD(OFF)I |
|
|
|
|
|
|
tRI |
|
|||
|
|
|
|
|
|
|
|
|
|
|
tFI |
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tD(ON)I |
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
FIGURE 16. INDUCTIVE SWITCHING TEST CIRCUIT |
|
|
FIGURE 17. SWITCHING TEST WAVEFORMS |
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
9-7 |
|
|
|
|
|
|
|
|
|
|
HGTG40N60B3
Operating Frequency Information |
Handling Precautions for IGBT’s |
Operating frequency information for a typical device (Figure 13) is presented as a guide for estimating device performance for a specific application. Other typical frequency vs collector current (ICE) plots are possible using the information shown for a typical unit in Figures 4, 7, 8, 11 and 12. The operating frequency plot (Figure 13) of a typical device shows fMAX1 or fMAX2 whichever is smaller at each point. The information is based on measurements of a typical device and is bounded by the maximum rated junction temperature.
fMAX1 is defined by fMAX1 = 0.05/(tD(OFF)I + tD(ON)I). Deadtime (the denominator) has been arbitrarily held to 10% of
the on-state time for a 50% duty factor. Other definitions are possible. tD(OFF)I and tD(ON)I are defined in Figure 17.
Device turn-off delay can establish an additional frequency limiting condition for an application other than TJMAX.
tD(OFF)I is important when controlling output ripple under a lightly loaded condition.
fMAX2 is defined by fMAX2 = (PD - PC)/(EOFF + EON). The allowable dissipation (PD) is defined by PD = (TJMAX - TC)/RθJC.
The sum of device switching and conduction losses must not exceed PD. A 50% duty factor was used (Figure 13) and the conduction losses (PC) are approximated by PC = (VCE x ICE)/2.
EON and EOFF are defined in the switching waveforms shown in Figure 17. EON is the integral of the instantaneous
power loss (ICE x VCE) during turn-on and EOFF is the integral of the instantaneous power loss (ICE x VCE) during turn-
off. All tail losses are included in the calculation of EOFF; i.e.the collector current equals zero (ICE = 0).
Insulated Gate Bipolar Transistors are susceptible to gateinsulation damage by the electrostatic discharge of energy through the devices. When handling these devices, care should be exercised to assure that the static charge built in the handler’s body capacitance is not discharged through the device. With proper handling and application procedures, however, IGBT’s are currently being extensively used in military, industrial and consumer applications, with virtually no damage problems due to electrostatic discharge. IGBT’s can be handled safely if the following basic precautions are taken:
1.Prior to assembly into a circuit, all leads should be kept shorted together either by the use of metal shorting springs or by the insertion into conductive material such as † ”ECCOSORBD LD26” or equivalent.
2.When devices are removed by hand from their carriers, the hand being used should be grounded by any suitable means - for example, with a metallic wristband.
3.Tips of soldering irons should be grounded.
4.Devices should never be inserted into or removed from circuits with power on.
5.Gate Voltage Rating - Never exceed the gate-voltage rat-
ing of VGEM. Exceeding the rated VGE can result in permanent damage to the oxide layer in the gate region.
6.Gate Termination - The gates of these devices are essentially capacitors. Circuits that leave the gate open-cir- cuited or floating should be avoided. These conditions can result in turn-on of the device due to voltage buildup on the input capacitor due to leakage currents or pickup.
7.Gate Protection - These devices do not have an internal monolithic zener diode from gate to emitter. If gate protection is required an external zener is recommended.
†Trademark Emerson and Cumming, Inc.
9-8
