Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

harris / I_G_B_TR / HGTG30N6

.PDF
Источник:
Скачиваний:
63
Добавлен:
06.01.2022
Размер:
130.61 Кб
Скачать

S E M I C O N D U C T O R

August 1995

HGTG30N60C3D

63A, 600V, UFS Series N-Channel IGBT

with Anti-Parallel Hyperfast Diode

Features

63A, 600V at TC = +25oC

Typical Fall Time - 230ns at TJ = +150oC

Short Circuit Rating

Low Conduction Loss

Hyperfast Anti-Parallel Diode

Description

The HGTG30N60C3D is a MOS gated high voltage switching device combining the best features of MOSFETs and bipolar transistors. The device has the high input impedance of a MOSFET and the low on-state conduction loss of a bipolar transistor. The much lower on-state voltage drop varies only moderately between +25oC and +150oC. The IGBT used is the development type TA49051. The diode used in anti-parallel with the IGBT is the development type TA49053.

The IGBT is ideal for many high voltage switching applications operating at moderate frequencies where low conduction losses are essential.

PACKAGING AVAILABILITY

PART NUMBER

PACKAGE

BRAND

 

 

 

HGTG30N60C3D

TO-247

G30N60C3D

 

 

 

NOTE: When ordering, use the entire part number.

Formerly Developmental Type TA49014.

Package

JEDEC STYLE TO-247

E

C

G

Terminal Diagram

N-CHANNEL ENHANCEMENT MODE

C

G

E

Absolute Maximum Ratings TC = +25oC, Unless Otherwise Specified

 

 

HGTG30N60C3D

UNITS

 

 

 

 

 

Collector-Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. BVCES

600

V

Collector Current Continuous

 

 

 

 

At T

C

= +25oC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. .

. I

63

A

 

 

 

C25

 

 

At TC = +110oC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. .

. IC110

30

A

Average Diode Forward Current at +110oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. .

I(AVG)

25

A

Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. .

. . ICM

252

A

Gate-Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. .

VGES

±20

V

Gate-Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. .

VGEM

±30

V

Switching Safe Operating Area at TJ = +150oC . . . . . . . . . . . . . . . . . . . . . . . . . .

. .

SSOA

60A at 600V

 

Power Dissipation Total at TC = +25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. .

. . PD

208

W

Power Dissipation Derating TC > +25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. .

. . . . .

1.67

W/oC

Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . .

T

, T

-40 to +150

oC

 

 

 

J

STG

 

oC

Maximum Lead Temperature for Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. .

. . . TL

260

Short Circuit Withstand Time (Note 2) at VGE = 15V . . . . . . . . . . . . . . . . . . . . . .

. .

. . tSC

4

μs

Short Circuit Withstand Time (Note 2) at VGE = 10V . . . . . . . . . . . . . . . . . . . . . .

. .

. . tSC

15

μs

NOTE:

1.Repetitive Rating: Pulse width limited by maximum junction temperature.

2.VCE(PK) = 360V, TJ = +125oC, RGE = 25Ω.

HARRIS SEMICONDUCTOR IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS:

4,364,073

4,417,385

4,430,792

4,443,931

4,466,176

4,516,143

4,532,534

4,567,641

4,587,713

4,598,461

4,605,948

4,618,872

4,620,211

4,631,564

4,639,754

4,639,762

4,641,162

4,644,637

4,682,195

4,684,413

4,694,313

4,717,679

4,743,952

4,783,690

4,794,432

4,801,986

4,803,533

4,809,045

4,809,047

4,810,665

4,823,176

4,837,606

4,860,080

4,883,767

4,888,627

4,890,143

4,901,127

4,904,609

4,933,740

4,963,951

4,969,027

 

 

 

 

 

 

 

 

 

 

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper ESD Handling Procedures.

 

File Number 4041

Copyright © Harris Corporation 1995

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

Specifications HGTG30N60C3D

Electrical Specifications TC = +25oC, Unless Otherwise Specified

 

 

 

 

 

 

 

 

 

 

 

 

LIMITS

 

 

 

 

 

 

 

 

 

 

 

 

 

PARAMETERS

SYMBOL

 

 

 

 

TEST CONDITIONS

MIN

TYP

MAX

UNITS

 

 

 

 

 

 

 

 

Collector-Emitter Breakdown Voltage

BVCES

IC = 250μA, VGE = 0V

 

600

-

-

V

Emitter-Collector Breakdown Voltage

BVECS

IC = 10mA, VGE = 0V

 

 

15

25

-

V

Collector-Emitter Leakage Current

ICES

VCE = BVCES

 

TC = +25oC

-

-

250

μA

 

 

VCE = BVCES

 

TC = +150oC

-

-

3.0

mA

Collector-Emitter Saturation Voltage

V

I

C

= I ,

 

T

C

= +25oC

-

1.5

1.8

V

 

CE(SAT)

 

C110

 

 

 

 

 

 

 

 

 

VGE = 15V

 

 

 

 

 

 

 

 

 

 

 

TC = +150oC

-

1.7

2.0

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gate-Emitter Threshold Voltage

V

I

C

= 250μA,

 

T

C

= +25oC

3.0

5.2

6.0

V

 

GE(TH)

 

 

 

 

 

 

 

 

 

 

 

 

VCE = VGE

 

 

 

 

 

 

 

 

Gate-Emitter Leakage Current

IGES

VGE = ±20V

 

 

 

 

-

-

±100

nA

Switching SOA

SSOA

TJ = +150oC,

 

VCE(PK) = 480V

200

-

-

A

 

 

VGE = 15V,

 

 

 

 

 

 

 

 

 

 

 

VCE(PK) = 600V

60

-

-

A

 

 

RG = 3Ω,

 

 

 

L = 100μH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gate-Emitter Plateau Voltage

VGEP

IC = IC110, VCE = 0.5 BVCES

-

8.1

-

V

On-State Gate Charge

QG(ON)

IC = IC110,

 

VGE = 15V

-

162

180

nC

 

 

VCE = 0.5 BVCES

 

 

 

 

 

 

 

 

 

VGE = 20V

-

216

250

nC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Current Turn-On Delay Time

tD(ON)I

TJ = +150oC,

 

 

 

 

-

40

-

ns

 

 

ICE = IC110,

 

 

 

 

 

 

 

 

Current Rise Time

tRI

 

 

 

 

-

45

-

ns

V

CE(PK)

= 0.8 BV

CES,

 

 

 

 

VGE = 15V,

 

 

 

 

 

 

 

 

Current Turn-Off Delay Time

tD(OFF)I

 

 

 

 

-

320

400

ns

RG = 3Ω,

 

 

 

 

 

 

L = 100μH

 

 

 

 

 

 

 

 

Current Fall Time

tFI

 

 

 

 

-

230

275

ns

 

 

 

 

 

 

 

 

 

Turn-On Energy

EON

 

 

 

 

 

 

 

 

 

-

1050

-

μJ

Turn-Off Energy (Note 1)

EOFF

 

 

 

 

 

 

 

 

 

-

2500

-

μJ

Diode Forward Voltage

VEC

IEC = 30A

 

 

 

 

-

1.75

2.2

V

Diode Reverse Recovery Time

tRR

IEC = 30A, dIEC/dt = 100A/μs

-

52

60

ns

 

 

IEC = 1.0A, dIEC/dt = 100A/μs

-

42

50

ns

 

 

 

 

 

 

 

 

 

 

 

 

Thermal Resistance

RθJC

IGBT

 

 

 

 

 

-

-

0.6

oC/W

 

 

Diode

 

 

 

 

 

-

-

1.3

oC/W

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTE:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.Turn-Off Energy Loss (EOFF) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero (ICE = 0A). The HGTG30N60C3D was tested per JEDEC standard No. 24-1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss. TurnOn losses include diode losses.

2

 

 

 

 

 

 

 

HGTG30N60C3D

 

 

 

 

 

 

 

 

 

 

 

 

 

Typical Performance Curves

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

150

 

 

 

 

 

 

 

 

150

PULSE DURATION = 250μs, DUTY CYCLE <0.5%, T

C

= +25oC

, COLLECTOR-EMITTER CURRENT (A)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PULSE DURATION = 250μs

 

 

 

 

 

COLLECTOR-EMITTER CURRENT (A)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VGE = 15.0V

12.0V

 

 

 

 

 

 

 

10.0V

DUTY CYCLE <0.5%, VCE = 10V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

125

 

 

 

 

 

 

 

125

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9.5V

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TC = +150oC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9.0V

75

 

 

 

 

 

 

 

75

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TC = +25oC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.5V

 

50

= -40oC

 

 

 

 

 

 

50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.0V

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.0V

 

25

 

 

 

 

 

 

 

25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.5V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CE

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

0

 

 

 

 

 

 

 

CE

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

6

8

 

10

12

 

 

 

2

4

 

 

6

 

8

 

 

 

10

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

VGE, GATE-TO-EMITTER VOLTAGE (V)

 

 

 

VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)

 

 

 

FIGURE 1. TRANSFER CHARACTERISTICS

 

 

 

FIGURE 2. SATURATION CHARACTERISTICS

 

 

(A)

150

 

 

 

 

 

 

 

(A)

150

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PULSE DURATION = 250μs

 

T

 

= -40oC

 

 

 

 

 

 

μ

 

 

 

 

 

 

 

 

 

DUTY CYCLE <0.5%, VGE = 10V

C

 

 

PULSE DURATION = 250 s

 

 

 

 

 

 

 

 

 

CURRENT

 

 

 

CURRENT

 

DUTY CYCLE <0.5%

 

 

 

 

 

 

 

 

 

125

 

 

 

 

 

 

 

125

VGE = 15V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TC = +150oC

 

100

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COLLECTOR-EMITTER

 

 

 

 

 

 

 

COLLECTOR-EMITTER

 

 

 

TC = -40oC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TC = +25oC

 

 

 

 

 

 

 

T

C

= +25oC

 

75

 

 

 

 

 

75

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TC = +150oC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50

 

 

 

 

 

 

 

50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25

 

 

 

 

 

 

 

25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CE

 

 

 

 

 

 

 

 

CE

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

0

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

3

 

 

4

5

 

0

 

 

 

1

2

 

 

3

 

4

 

 

 

5

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)

 

 

 

VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)

 

 

 

FIGURE 3. COLLECTOR-EMITTER ON-STATE VOLTAGE

 

FIGURE 4. COLLECTOR-EMITTER ON-STATE VOLTAGE

 

 

70

 

 

 

 

 

 

 

CIRCUIT WITHSTAND TIME (μs)

25

 

 

 

 

 

 

 

 

 

 

 

 

500

 

 

VGE = 15V

 

 

 

 

 

 

 

 

 

 

 

Ω

 

o

C

 

 

 

 

 

SHORT CIRCUIT CURRENT (A)

, DC COLLECTOR CURRENT (A)

 

 

 

 

 

 

 

 

VCE = 360V, RGE = 25 , TJ = +125

 

 

 

 

 

 

60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

450

50

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

ISC

 

 

 

400

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

350

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15

 

 

 

 

 

 

 

 

 

 

 

 

300

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

250

20

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

200

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tSC

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CE

 

 

 

 

 

 

 

SHORT

 

 

 

 

 

 

 

 

 

 

 

 

 

150

PEAK,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SC

 

0

 

 

 

 

 

 

 

SC

5

 

 

 

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

150

t

 

 

 

 

 

 

 

 

 

 

 

 

I

 

25

50

75

100

 

 

125

 

10

11

 

 

12

13

14

 

 

 

15

 

 

 

 

T , CASE TEMPERATURE (oC)

 

 

 

 

V

GE

, GATE-TO-EMITTER VOLTAGE (V)

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5. MAX. DC COLLECTOR CURRENT AS A FUNCTION

 

 

FIGURE 6. SHORT CIRCUIT WITHSTAND TIME

 

 

 

OF CASE TEMPERATURE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HGTG30N60C3D

Typical Performance Curves (Continued)

 

200

 

= +150oC, R

 

= 3Ω, L = 100μH, V

 

 

 

 

T

J

G

 

= 480V

 

(ns)

 

 

 

CE(PK)

 

 

 

 

 

 

 

 

 

 

 

TIME

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DELAY

 

 

 

 

 

 

VGE = 10V

 

50

 

 

 

 

 

VGE = 15V

 

-ON

40

 

 

 

 

 

 

TURN,

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D(ON)I

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

10

 

20

 

30

40

 

50

60

 

10

 

 

 

ICE , COLLECTOR-EMITTER CURRENT (A)

FIGURE 7. TURN-ON DELAY TIME AS A FUNCTION OF COLLECTOR-EMITTER CURRENT

 

500

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T

= +150oC, R

G

= 3Ω, L = 100μH, V

CE(PK)

= 480V

 

 

 

(ns)

 

J

 

 

 

 

 

 

 

 

 

 

 

 

400

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TIME

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

300

 

 

 

 

 

 

 

 

 

 

 

 

 

VGE = 15V

 

 

DELAY

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VGE = 10V

 

 

-OFF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

200

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

, TURN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D(OFF)I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

30

40

 

 

50

 

60

 

10

 

 

 

 

 

ICE , COLLECTOR-EMITTER CURRENT (A)

FIGURE 8. TURN-OFF DELAY TIME AS A FUNCTION OF

COLLECTOR-EMITTER CURRENT

 

500

 

= +150oC, R

 

= 3Ω, L = 100μH, V

 

 

 

 

500

 

o

 

 

 

 

 

 

 

T

J

G

 

= 480V

 

 

 

TJ = +150

C, RG = 3

Ω

μ

H, VCE(PK) = 480V

 

 

 

 

 

CE(PK)

 

 

 

 

 

, L = 100

 

 

(ns)

 

 

 

 

 

 

 

 

 

 

400

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(ns)

 

 

 

 

 

 

 

 

 

TIME

 

 

 

 

 

 

VGE = 10V

 

300

 

 

 

 

 

 

 

 

RISE

100

 

 

 

 

 

 

 

 

TIME

 

 

 

 

 

 

 

VGE = 10V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ON-

 

 

 

 

 

 

 

 

 

FALL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

200

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TURN

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

VGE = 15V

 

 

 

 

 

 

VGE = 15V

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FI

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RI

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

20

 

30

40

 

50

60

 

100

20

30

 

40

50

60

 

10

 

 

 

 

10

 

 

 

 

ICE , COLLECTOR-EMITTER CURRENT (A)

 

 

 

ICE , COLLECTOR-EMITTER CURRENT (A)

 

FIGURE 9. TURN-ON RISE TIME AS A FUNCTION OF

FIGURE 10. TURN-OFF FALL TIME AS A FUNCTION OF

COLLECTOR-EMITTER CURRENT

COLLECTOR-EMITTER CURRENT

 

8.0

= +150oC, R

 

= 3Ω, L = 100μH, V

 

 

 

6.0

 

= +150oC, R

 

 

 

 

 

 

 

T

G

 

= 480V

 

T

J

G

= 3Ω, L = 100μH, V

CE(PK)

= 480V

 

(mJ)

J

 

 

CE(PK)

 

(mJ)

5.0

 

 

 

 

 

7.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LOSSENERGYON-TURN

 

 

 

 

 

 

LOSSENERGYOFF-TURN

 

 

 

 

 

 

 

 

 

6.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.0

 

 

 

 

 

 

 

4.0

 

 

 

 

 

 

 

 

 

 

 

 

VGE = 10V

 

 

 

 

 

 

 

 

 

 

 

4.0

 

 

 

 

3.0

 

VGE = 10V or 15V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.0

 

 

 

 

 

 

 

2.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

VGE = 15V

,

1.0

 

 

 

 

 

 

 

 

ON

1.0

 

 

 

 

 

 

OFF

 

 

 

 

 

 

 

 

 

E

0

 

 

 

 

 

 

E

 

 

 

 

 

 

 

 

 

 

20

 

30

40

 

50

60

0

 

20

 

30

40

50

60

 

10

 

 

10

 

 

 

 

ICE , COLLECTOR-EMITTER CURRENT (A)

 

 

 

ICE , COLLECTOR-EMITTER CURRENT (A)

 

FIGURE 11. TURN-ON ENERGY LOSS AS A FUNCTION OF

FIGURE 12. TURN-OFF ENERGY LOSS AS A FUNCTION OF

COLLECTOR-EMITTER CURRENT

COLLECTOR-EMITTER CURRENT

4

 

 

 

 

 

 

 

 

 

HGTG30N60C3D

 

 

 

 

 

 

Typical Performance Curves (Continued)

 

 

 

 

 

 

 

 

 

 

 

500

 

 

 

 

 

 

 

 

 

-EMITTER CURRENT (A)

250

TJ = 150oC, VGE = 15V, L = 100μH

 

 

 

OPERATING FREQUENCY (kHz)

 

 

 

 

 

 

TJ = +150oC, TC = +75oC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RG = 3Ω, L = 100μH

 

200

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VGE = 15V

 

150

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fMAX1 = 0.05/(tD(OFF)I + tD(ON)I)

 

 

 

100

 

LIMITED BY

 

 

 

 

 

 

 

 

 

 

CIRCUIT

 

 

 

 

10 fMAX2 = (PD - PC)/(EON + EOFF)

 

 

 

 

 

 

 

 

 

VGE = 10V

 

 

 

 

 

 

 

 

 

 

 

PD = ALLOWABLE DISSIPATION

 

 

 

 

 

 

 

 

 

 

 

 

PC = CONDUCTION DISSIPATION

 

 

 

50

 

 

 

 

 

 

 

,

 

 

 

 

 

(DUTY FACTOR = 50%)

 

 

 

COLLECTOR,

 

 

 

 

 

 

 

 

MAX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

θJC

= 0.6oC/W

 

 

 

 

 

 

 

 

 

 

 

 

f

 

 

 

 

 

 

 

 

CE

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

I

0 0

 

 

 

 

 

 

 

 

5

 

 

 

10

20

30

40

60

 

100

200

300

400

500

600

 

 

 

 

 

 

 

ICE, COLLECTOR-EMITTER CURRENT (A)

 

 

 

VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)

 

 

FIGURE 13. OPERATING FREQUENCY AS A FUNCTION OF

 

 

FIGURE 14. SWITCHING SAFE OPERATING AREA

 

 

 

 

 

 

COLLECTOR-EMITTER CURRENT

 

 

 

 

 

 

 

 

 

 

 

 

8000

 

 

 

 

 

 

 

 

(V)

 

 

IG REF = 3.54mA, RL = 20Ω, TC = +25oC

 

 

 

 

 

 

 

FREQUENCY = 400kHz

 

600

 

 

 

 

 

15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VOLTAGE

 

 

 

 

 

 

 

 

 

7000

 

 

 

 

CIES

 

 

 

 

 

 

 

 

 

 

VOLTAGE (V)

(pF)

6000

 

 

 

 

 

 

 

 

480

 

VCE = 600V

 

 

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5000

 

 

 

 

 

 

 

 

360

 

 

 

 

 

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CAPACITANCEC,

 

 

 

 

 

 

 

 

 

 

, COLLECTOREMITTER-

 

 

 

 

 

EMITTER

4000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3000

 

 

 

 

 

 

 

 

240

 

 

VCE = 400V

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-

2000

 

 

 

 

 

 

 

 

 

 

VCE = 200V

 

 

 

, GATE

 

 

 

 

COES

 

 

 

120

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1000

 

 

 

 

CRES

 

 

 

 

 

 

 

 

 

 

GE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

 

 

0

 

 

 

 

 

 

 

 

CE

0

 

 

 

 

 

0

 

 

 

0

 

 

5

10

15

20

25

V

40

 

80

120

160

 

 

 

 

 

 

 

0

 

200

 

 

 

 

 

 

 

VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)

 

 

 

QG , GATE CHARGE (nC)

 

 

 

FIGURE 15. CAPACITANCE AS A FUNCTION OF COLLECTOR-

 

 

FIGURE 16. GATE CHARGE WAVEFORMS

 

 

 

 

 

 

 

EMITTER VOLTAGE

 

 

 

 

 

 

 

 

 

 

 

 

 

RESPONSE

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THERMAL

 

 

 

0.2

 

 

 

 

 

 

 

 

 

t1

 

 

 

 

 

 

 

0.1

 

 

 

 

 

 

 

 

 

 

 

 

 

10-1

 

 

 

 

 

 

 

 

 

PD

 

 

 

 

 

 

0.05

 

 

 

 

 

 

 

 

 

 

 

 

 

, NORMALIZED

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.02

 

 

 

 

 

 

 

 

 

t2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.01

 

 

 

 

 

 

DUTY FACTOR, D = t1 / t2

 

 

 

 

 

 

 

 

SINGLE PULSE

 

 

 

 

 

 

 

 

 

-2

 

 

 

 

 

 

PEAK TJ = (PD X ZθJC X RθJC) + TC

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

θJC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10-5

10-4

 

10-3

 

10-2

 

10-1

 

 

100

 

101

 

 

 

 

 

 

 

 

 

 

t1 , RECTANGULAR PULSE DURATION (s)

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 17. IGBT NORMALIZED TRANSIENT THERMAL IMPEDANCE, JUNCTION TO CASE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

HGTG30N60C3D

Typical Performance Curves (Continued)

 

200

 

 

 

 

 

 

 

 

 

CURRENT (A)

 

 

 

+100oC

 

 

 

 

 

 

FORWARD,

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EC

 

+150

o

C

+25

o

C

 

 

 

I

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

0

0.5

1.0

 

1.5

2.0

2.5

3.0

VEC , FORWARD VOLTAGE (V)

FIGURE 18. DIODE FORWARD CURRENT AS A FUNCTION OF FORWARD VOLTAGE DROP

60

TC = +25oC, dIEC/dt = 100A/μs

(ns)

50

 

 

tRR

TIMES

40

 

RECOVERY,

30

tA

 

 

 

 

20

tB

 

 

R

 

t

10

 

 

0

1

5

10

30

 

IEC , FORWARD CURRENT (A)

 

FIGURE 19. RECOVERY TIMES AS A FUNCTION OF FORWARD CURRENT

Test Circuit and Waveforms

L = 100μH

90%

 

RHRP3060

VGE

10%

 

 

 

EOFF

EON

RG = 3Ω

VCE

 

+

90%

 

 

 

VDD = 480V

10%

 

-

ICE

 

 

tD(OFF)I

tRI

 

tFI

tD(ON)I

 

 

FIGURE 20. INDUCTIVE SWITCHING TEST CIRCUIT

FIGURE 21. SWITCHING TEST WAVEFORMS

6

HGTG30N60C3D

Operating Frequency Information

Handling Precautions for IGBTs

Operating frequency information for a typical device (Figure 13) is presented as a guide for estimating device performance for a specific application. Other typical frequency vs collector current (ICE) plots are possible using the information shown for a typical unit in Figures 4, 7, 8, 11 and 12. The operating frequency plot (Figure 13) of a typical device shows fMAX1 or fMAX2 whichever is smaller at each point. The information is based on measurements of a typical device and is bounded by the maximum rated junction temperature.

fMAX1 is defined by fMAX1 = 0.05/(tD(OFF)I + tD(ON)I). Deadtime (the denominator) has been arbitrarily held to 10% of

the on-state time for a 50% duty factor. Other definitions are possible. tD(OFF)I and tD(ON)I are defined in Figure 21.

Device turn-off delay can establish an additional frequency

limiting condition for an application other than TJMAX. tD(OFF)I is important when controlling output ripple under a lightly

loaded condition.

fMAX2 is defined by fMAX2 = (PD - PC)/(EOFF + EON). The allowable dissipation (PD) is defined by PD = (TJMAX - TC)/ RθJC. The sum of device switching and conduction losses

must not exceed PD. A 50% duty factor was used (Figure 13) and the conduction losses (PC) are approximated by PC = (VCE x ICE)/2.

EON and EOFF are defined in the switching waveforms shown in Figure 21. EON is the integral of the instantaneous

power loss (ICE x VCE) during turn-on and EOFF is the integral of the instantaneous power loss during turn-off. All tail

losses are included in the calculation for EOFF; i.e. the collector current equals zero (ICE = 0).

Insulated Gate Bipolar Transistors are susceptible to gateinsulation damage by the electrostatic discharge of energy through the devices. When handling these devices, care should be exercised to assure that the static charge built in the handler’s body capacitance is not discharged through the device. With proper handling and application procedures, however, IGBTs are currently being extensively used in production by numerous equipment manufacturers in military, industrial and consumer applications, with virtually no damage problems due to electrostatic discharge. IGBTs can be handled safely if the following basic precautions are taken:

1.Prior to assembly into a circuit, all leads should be kept shorted together either by the use of metal shorting springs or by the insertion into conductive material such as “ECCOSORBD LD26” or equivalent.

2.When devices are removed by hand from their carriers, the hand being used should be grounded by any suitable means - for example, with a metallic wristband.

3.Tips of soldering irons should be grounded.

4.Devices should never be inserted into or removed from circuits with power on.

5.Gate Voltage Rating - Never exceed the gate-voltage rat-

ing of VGEM. Exceeding the rated VGE can result in permanent damage to the oxide layer in the gate region.

6.Gate Termination - The gates of these devices are essentially capacitors. Circuits that leave the gate open-circuited or floating should be avoided. These conditions can result in turn-on of the device due to voltage buildup on the input capacitor due to leakage currents or pickup.

7.Gate Protection - These devices do not have an internal monolithic zener diode from gate to emitter. If gate protection is required an external zener is recommended.

Trademark Emerson and Cumming, Inc.

7

HGTG30N60C3D

Packaging

E

A

TERM. 4

 

ØS

ØP

 

Q

 

ØR

D

L1

 

b1

 

 

 

 

 

 

 

 

L

 

b2

c

 

 

 

b

 

 

 

 

 

 

 

1

2

3

3

2

1

 

e

 

J1

BACK VIEW

 

 

 

 

 

e1

 

 

 

 

 

 

LEAD NO. 1

- GATE

 

 

 

 

LEAD NO. 2 - COLLECTOR

 

 

 

 

LEAD NO. 3

- EMITTER

 

 

 

 

TERM. 4

- COLLECTOR

 

 

TO-247

3 LEAD JEDEC STYLE TO-247 PLASTIC PACKAGE

 

INCHES

MILLIMETERS

 

SYMBOL

 

 

 

 

NOTES

MIN

MAX

MIN

MAX

 

 

 

 

 

 

A

0.180

0.190

4.58

4.82

-

 

 

 

 

 

 

b

0.046

0.051

1.17

1.29

2, 3

 

 

 

 

 

 

b1

0.060

0.070

1.53

1.77

1, 2

b2

0.095

0.105

2.42

2.66

1, 2

c

0.020

0.026

0.51

0.66

1, 2, 3

 

 

 

 

 

 

D

0.800

0.820

20.32

20.82

-

 

 

 

 

 

 

E

0.605

0.625

15.37

15.87

-

 

 

 

 

 

 

e

0.219 TYP

5.56 TYP

4

 

 

 

 

e1

0.438 BSC

11.12 BSC

4

J1

0.090

0.105

2.29

2.66

5

L

0.620

0.640

15.75

16.25

-

 

 

 

 

 

 

L1

0.145

0.155

3.69

3.93

1

ØP

0.138

0.144

3.51

3.65

-

 

 

 

 

 

 

Q

0.210

0.220

5.34

5.58

-

 

 

 

 

 

 

ØR

0.195

0.205

4.96

5.20

-

 

 

 

 

 

 

ØS

0.260

0.270

6.61

6.85

-

 

 

 

 

 

 

NOTES:

1.Lead dimension and finish uncontrolled in L1.

2.Lead dimension (without solder).

3.Add typically 0.002 inches (0.05mm) for solder coating.

4.Position of lead to be measured 0.250 inches (6.35mm) from bottom of dimension D.

5.Position of lead to be measured 0.100 inches (2.54mm) from bottom of dimension D.

6.Controlling dimension: Inch.

7.Revision 1 dated 1-93.

All Harris Semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Harris Semiconductor products are sold by description only. Harris Semiconductor reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Harris is believed to be accurate and reliable. However, no responsibility is assumed by Harris or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Harris or its subsidiaries.

Sales Office Headquarters

For general information regarding Harris Semiconductor and its products, call 1-800-4-HARRIS

UNITED STATES

EUROPE

ASIA

Harris Semiconductor

Harris Semiconductor

Harris Semiconductor PTE Ltd.

P. O. Box 883, Mail Stop 53-210

Mercure Center

No. 1 Tannery Road

Melbourne, FL 32902

100, Rue de la Fusee

Cencon 1, #09-01

TEL: 1-800-442-7747

1130 Brussels, Belgium

Singapore 1334

(407) 729-4984

TEL: (32) 2.724.2111

TEL: (65) 748-4200

FAX: (407) 729-5321

FAX: (32) 2.724.22.05

FAX: (65) 748-0400

 

 

 

 

 

 

 

 

 

S E M I C O N D U C T O R

 

8

Соседние файлы в папке I_G_B_TR