Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

harris / I_G_B_TR / HGTG24N6

.PDF
Источник:
Скачиваний:
63
Добавлен:
06.01.2022
Размер:
42.23 Кб
Скачать

S E M I C O N D U C T O R

May 1995

HGTG24N60D1

24A, 600V N-Channel IGBT

Features

24A, 600V

Latch Free Operation

Typical Fall Time <500ns

High Input Impedance

Low Conduction Loss

Description

The IGBT is a MOS gated high voltage switching device combining the best features of MOSFETs and bipolar transistors. The device has the high input impedance of a MOSFET and the low on-state conduction loss of a bipolar transistor. The much lower on-state voltage drop varies only moderately between +25oC and +150oC.

IGBTs are ideal for many high voltage switching applications operating at moderate frequencies where low conduction losses are essential, such as: AC and DC motor controls, power supplies and drivers for solenoids, relays and contactors.

PACKAGING AVAILABILITY

PART NUMBER

PACKAGE

BRAND

 

 

 

HGTG24N60D1

TO-247

G24N60D1

 

 

 

Package

JEDEC STYLE TO-247

EMITTER

COLLECTOR

GATE

COLLECTOR

(BOTTOM SIDE

METAL)

Terminal Diagram

N-CHANNEL ENHANCEMENT MODE

C

G

E

Absolute Maximum Ratings TC = +25oC, Unless Otherwise Specific

 

 

 

 

 

 

 

HGTG24N60D1

UNITS

Collector-Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. BVCES

600

V

Collector-Gate Voltage RGE = 1MΩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. BVCGR

600

V

Collector Current Continuous at TC = +25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. .

. IC25

40

A

at VGE = 15V at TC = +90oC . . . . . . . . . . . . . . . . .

. .

. IC90

24

A

Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. .

. . ICM

96

A

Gate-Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. .

VGES

±25

V

Switching Safe Operating Area at TJ = +150oC . . . . . . . . . . . . . . . . . . . . . . . . . .

. .

SSOA

60A at 0.8 BVCES

-

Power Dissipation Total at TC = +25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. .

. . PD

125

W

Power Dissipation Derating T > +25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. .

. . . . .

1.0

W/oC

C

 

 

 

oC

Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . .

T

, T

-55 to +150

 

J

STG

 

oC

Maximum Lead Temperature for Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. .

. . . TL

260

(0.125 inch from case for 5s)

NOTE:

1. Repetitive Rating: Pulse width limited by maximum junction temperature.

HARRIS SEMICONDUCTOR IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS:

4,364,073

4,417,385

4,430,792

4,443,931

4,466,176

4,516,143

4,532,534

4,567,641

4,587,713

4,598,461

4,605,948

4,618,872

4,620,211

4,631,564

4,639,754

4,639,762

4,641,162

4,644,637

4,682,195

4,684,413

4,694,313

4,717,679

4,743,952

4,783,690

4,794,432

4,801,986

4,803,533

4,809,045

4,809,047

4,810,665

4,823,176

4,837,606

4,860,080

4,883,767

4,888,627

4,890,143

4,901,127

4,904,609

4,933,740

4,963,951

4,969,027

 

 

 

 

 

 

 

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper ESD Handling Procedures.

File Number 2831.3

 

Copyright © Harris Corporation 1995

3-103

 

 

 

Specifications HGTG24N60D1

Electrical Specifications TC = +25oC, Unless Otherwise Specified

 

 

 

 

 

 

 

 

 

 

LIMITS

 

 

 

 

 

 

 

 

 

 

 

PARAMETERS

SYMBOL

 

 

TEST CONDITIONS

MIN

TYP

MAX

UNITS

 

 

 

 

 

 

 

 

Collector-Emitter Breakdown Voltage

BVCES

IC = 250μA, VGE = 0V

 

600

-

-

V

Collector-Emitter Leakage Voltage

I

V

CE

= BV

CES

T

C

= +25oC

-

-

1.0

mA

 

CES

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

CE

= 0.8 BV

T

C

= +125oC

-

-

4.0

mA

 

 

 

 

CES

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Collector-Emitter Saturation Voltage

VCE(SAT)

IC = IC90,

 

TC = +25oC

-

1.7

2.3

V

 

 

VGE = 15V

 

 

 

 

 

 

 

 

 

TC = +125oC

-

1.9

2.5

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gate-Emitter Threshold Voltage

VGE(TH)

IC = 250μA,

TC= +25oC

3.0

4.5

6.0

V

 

 

VCE = VGE

 

 

 

 

 

 

 

Gate-Emitter Leakage Current

IGES

VGE = ±20V

 

 

 

-

-

±500

nA

Gate-Emitter Plateau Voltage

VGEP

IC = IC90, VCE = 0.5 BVCES

-

6.3

-

V

On-State Gate Charge

QG(ON)

IC = IC90,

 

VGE = 15V

-

120

155

nC

 

 

VCE = 0.5 BVCES

 

 

 

 

 

 

 

 

 

VGE = 20V

-

155

200

nC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Current Turn-On Delay Time

tD(ON)I

L = 500μH, IC = IC90, RG = 25Ω,

-

100

-

ns

 

 

VGE = 15V, TJ = +150oC,

 

 

 

 

Current Rise Time

tRI

-

150

-

ns

VCE = 0.8 BVCES

 

 

 

Current Turn-Off Delay Time

tD(OFF)I

 

 

 

 

 

 

 

-

700

900

ns

Current Fall Time

tFI

 

 

 

 

 

 

 

-

450

600

ns

Turn-Off Energy (Note 1)

WOFF

 

 

 

 

 

 

 

-

4.3

-

mJ

Thermal Resistance

RθJC

 

 

 

 

 

 

 

-

-

1.00

oC/W

NOTE: 1. Turn-Off Energy Loss (WOFF) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero (ICE = 0A) The HGTG24N60D1 was tested per JEDEC standard No. 24-1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.

Typical Performance Curves

 

 

 

40

 

 

 

 

 

 

 

(A)

 

PULSE DURATION = 250μs

 

 

 

CURRENT

 

DUTY CYCLE < 0.5%, VCE = 15V

 

 

 

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EMITTER-

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COLLECTOR,

 

T

 

= +150oC

 

 

 

 

 

TC = -40oC

 

 

 

 

 

 

C

 

 

 

 

 

10

T

C

= +25oC

 

 

 

 

 

 

 

 

 

 

CE

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

0

2

 

 

4

6

8

10

VGE, GATE-TO-EMITTER VOLTAGE (V)

FIGURE 1. TRANSFER CHARACTERISTICS (TYPICAL)

 

40

 

VGE = 15V

VGE = 10V

 

 

(A)

 

 

VGE = 7.0V

 

35

 

 

 

 

EMITTER-COLLECTOR, CURRENT

DURATIONPULSE= 250μs <CYCLEDUTY0.5%, T

 

 

 

 

5

 

 

 

 

 

 

C

 

 

 

 

 

 

o

 

 

 

 

 

30

+25

 

 

 

 

 

 

=

 

 

 

 

 

25

C

 

 

 

 

 

 

 

 

 

VGE = 6.5V

 

 

20

 

 

 

 

 

 

15

 

 

 

VGE = 6.0V

 

 

10

 

 

 

 

 

 

 

 

 

 

VGE = 5.5V

 

CE

 

 

 

 

VGE = 5.0V

 

I

0

 

 

 

 

 

 

 

 

 

 

 

0

1

2

3

4

5

 

 

VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)

 

FIGURE 2. SATURATION CHARACTERISTICS (TYPICAL)

3-104

HGTG24N60D1

Typical Performance Curves (Continued)

 

50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VGE = 15V

 

 

(A)

40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CURRENT

 

 

 

 

 

 

 

 

 

 

 

30

 

 

 

 

 

 

 

 

 

 

 

COLLECTOR

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

, DC

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CE

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+25

+50

+75

+100

+125

+150

TC , CASE TEMPERATURE (oC)

FIGURE 3. DC COLLECTOR CURRENT vs CASE TEMPERATURE

1000

 

900

 

800

(ns)

700

600

TIME

500

FALL

400

,

 

FI

300

t

 

200

 

100

 

0

1

VCE = 480V, VGE = 10V AND 15V,

TJ = +150oC, RG = 25Ω, L = 500μH

10

40

ICE, COLLECTOR-EMITTER CURRENT (A)

FIGURE 4. FALL TIME vs COLLECTOR-EMITTER CURRENT

C, CAPACITANCE (pF)

6000

 

 

 

600

 

 

 

10

 

 

 

f = 1MHz

(V)

 

 

 

 

 

 

 

 

VOLTAGEEMITTER-

 

0.50 BVCES 0.50 BVCES

 

VOLTAGEEMITTER-(V)

5000

 

 

 

 

 

 

 

 

VCC = BVCES

 

VCC = BVCES

 

 

 

 

 

 

450

 

7.5

 

4000

 

 

 

 

 

 

 

 

 

3000

CISS

 

 

300

0.75 BVCES 0.75 BVCES

5

 

 

 

 

COLLECTOR

 

 

 

 

COSS

 

150

RL = 30Ω

2.5

GE

2000

 

 

 

 

0.25 BVCES 0.25 BVCES

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

1000

 

 

CE

 

IG(REF) = 1.83mA

 

V

 

 

 

,

 

 

 

 

CRSS

 

V

0

V

GE

= 10V

0

 

0

 

 

 

 

 

 

 

0

5

10

15

20

25

 

 

IG(REF)

 

IG(REF)

 

 

 

 

 

 

20

 

 

TIME (μs)

80

 

 

 

 

 

 

 

 

 

 

 

 

VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)

 

 

 

IG(ACT)

 

IG(ACT)

FIGURE 5. CAPACITANCE vs COLLECTOR-EMITTER VOLTAGE

FIGURE 6. NORMALIZED SWITCHING WAVEFORMS AT CON-

 

 

 

 

 

 

 

STANT GATE CURRENT (REFER TO APPLICATION

 

 

 

 

 

 

 

NOTES AN7254 AND AN7260)

 

 

 

(V)

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TJ = +150oC

 

 

 

 

 

 

 

 

 

 

 

 

VOLTAGE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

VGE = 10V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SATURATION,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VGE = 15V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CE(ON)

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

10

 

 

40

 

 

 

ICE, COLLECTOR-EMITTER CURRENT (A)

 

 

FIGURE 7. SATURATION VOLTAGE vs COLLECTOR-EMITTER CURRENT

(mJ)

7.00

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TJ = +150oC, RG = 25Ω,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LOSS

 

 

 

L = 500μH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SWITCHING

 

 

VCE = 480V, VGE = 10V, 15V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.00

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

, TURN-OFF

0.10

 

 

 

 

 

 

 

 

 

VCE = 240V, VGE = 10V, 15V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OFF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

W

0.05

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

10

 

 

40

ICE, COLLECTOR-EMITTER CURRENT (A)

FIGURE 8. TURN-OFF SWITCHING LOSS vs COLLECTOREMITTER CURRENT

3-105

HGTG24N60D1

Typical Performance Curves (Continued)

 

 

 

 

 

 

 

 

 

 

 

1300

 

 

80

 

 

 

 

 

 

 

TJ = +150oC, TC = +100oC,

 

 

 

 

VCE = 480V, VGE = 10V

 

 

 

 

 

 

 

 

 

DELAYOFF(ns)

1200

 

FREQUENCY(kHz)

RθJC = 1.0oC/W

 

RGE = 25Ω, L = 500μH

 

800

L = 500μH

 

 

 

 

 

1100

 

VCE = 480V, VGE = 15V

 

 

 

 

 

 

 

 

 

 

 

1000

T = +150oC

 

 

fMAX1 = 0.05/tD(OFF)I

 

 

 

 

 

f

MAX2

= (P

D

- P

C

)/W

OFF

 

 

900

J

 

 

 

 

 

 

 

D(OFF)I

RGE = 25Ω

 

10

PC = DUTY FACTOR = 50%

 

 

 

 

OPERATING,

 

 

 

 

 

 

 

 

 

-

 

 

 

 

 

 

 

VCE = 480V, VGE = 10V, 15V

 

TURN ,

700

 

 

 

 

 

 

 

 

600

VCE = 240V, VGE = 10V

 

 

 

 

 

 

 

 

 

 

 

t

500

VCE = 240V, VGE = 15V

 

OP

 

 

 

VCE = 240V, VGE = 10V, 15V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

400

 

 

f

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

300

 

 

1

 

 

 

 

 

 

 

10

50

 

 

1

10

40

 

 

ICE, COLLECTOR-EMITTER CURRENT (A)

 

 

 

 

 

NOTE:

 

 

 

 

 

 

 

 

 

ICE, COLLECTOR-EMITTER CURRENT (A)

P

D

= ALLOWABLE DISSIPATION P = CONDUCTION DISSIPATION

 

 

C

FIGURE 9. TURN-OFF DELAY vs COLLECTOR-EMITTER

FIGURE 10. OPERATING FREQUENCY vs COLLECTOR-

CURRENT

 

 

EMITTER CURRENT AND VOLTAGE

Operating Frequency Information

Operating frequency information for a typical device (Figure 10) is presented as a guide for estimating device performance for a specific application. Other typical frequency vs collector current (ICE) plots are possible using the information shown for a typical unit in Figures 7, 8 and 9. The operating frequency plot (Figure 10) of a typical device shows fMAX1 or fMAX2 whichever is smaller at each point. The information is based on measurements of a typical device and is bounded by the maximum rated junction temperature.

fMAX1 is defined by fMAX1 = 0.05/tD(OFF)I. tD(OFF)I deadtime (the denominator) has been arbitrarily held to 10% of the on-

state time for a 50% duty factor. Other definitions are possible.

tD(OFF)I is defined as the time between the 90% point of the trailing edge of the input pulse and the point where the

collector current falls to 90% of its maximum value. Device

turn-off delay can establish an additional frequency limiting

condition for an application other than TJMAX. tD(OFF)I is important when controlling output ripple under a lightly loaded

condition.

fMAX2 is defined by fMAX2 = (PD - PC)/WOFF. The allowable dissipation (PD) is defined by PD = (TJMAX - TC)/RθJC. The sum of device switching and conduction losses must not exceed PD.

A 50% duty factor was used (Figure 10) and the conduction

losses (PC) are approximated by PC = (VCE ICE)/2. WOFF is defined as the integral of the instantaneous power loss starting

at the trailing edge of the input pulse and ending at the point where the collector current equals zero (ICE = 0A).

The switching power loss (Figure 10) is defined as fMAX2 WOFF. Turn-on switching losses are not included because they can be

greatly influenced by external circuit conditions and components.

3-106

Соседние файлы в папке I_G_B_TR