Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

burr_brown / opt210

.pdf
Источник:
Скачиваний:
74
Добавлен:
06.01.2022
Размер:
118.01 Кб
Скачать

 

 

®

 

 

FPO

OPT210

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MONOLITHIC PHOTODIODE AND AMPLIFIER

300kHz Bandwidth at RF = 1MΩ

FEATURES

BOOTSTRAP ANODE DRIVE:

Extends Bandwidth: 900kHz (RF = 100KΩ)

Reduces Noise

LARGE PHOTODIODE: 0.09" x 0.09"

HIGH RESPONSIVITY: 0.45A/W (650nm)

EXCELLENT SPECTRAL RESPONSE

WIDE SUPPLY RANGE: ±2.25 to ±18V

TRANSPARENT DIP, SIP AND SURFACEMOUNT PACKAGES

APPLICATIONS

BARCODE SCANNERS

MEDICAL INSTRUMENTATION

LABORATORY INSTRUMENTATION

POSITION AND PROXIMITY DETECTORS

PARTICLE DETECTORS

DESCRIPTION

The OPT210 is a photodetector consisting of a high performance silicon photodiode and precision FETinput transimpedance amplifier integrated on a single monolithic chip. Output is an analog voltage proportional to light intensity.

The large 0.09" x 0.09" photodiode is operated at low bias voltage for low dark current and excellent linearity. A novel photodiode anode bootstrap circuit reduces the effects of photodiode capacitance to extend bandwidth and reduces noise.

The integrated combination of photodiode and transimpedance amplifier on a single chip eliminates the problems commonly encountered with discrete designs such as leakage current errors, noise pick-up and gain peaking due to stray capacitance.

The OPT210 operates from ±2.25 to ±18V supplies and quiescent current is only 2mA. Available in a transparent 8-pin DIP, 8-lead surface-mount and 5-pin SIP, it is specified for 0° to 70°C operation.

SPECTRAL RESPONSIVITY

V+

 

 

 

RF

 

 

 

 

 

1

(2)

2

(3)

 

 

 

 

 

 

0.5

 

 

 

 

 

OPT210

 

 

(V/µW)

 

 

 

 

 

 

 

 

5

 

0.4

 

 

 

 

 

 

 

VO

 

 

 

 

 

 

 

 

Output

 

λ

 

 

 

 

 

 

(5)

0.3

 

 

+1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Voltage

 

 

 

 

 

 

 

 

 

 

0.2

 

 

 

8

(1)

3

(4)

 

 

 

 

 

 

 

 

 

0.1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V–

 

 

 

 

 

 

DIP Pins

(SIP Pins)

 

 

 

 

0

 

Ultraviolet

 

Blue

Green

Yellow

Red

 

Infrared

(A/W)

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

 

Using External

 

 

 

 

 

0.4

Responsivity

 

 

1MΩ Resistor

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.2

Photodiode

 

 

 

 

 

 

 

 

 

 

0.1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

100

200

300

400

500

600

700

800

900

1000 1100

 

 

Wavelength (nm)

International Airport Industrial Park • Mailing Address: PO Box 11400, Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111 • Twx: 910-952-1111

Internet: http://www.burr-brown.com/ • FAXLine: (800) 548-6133 (US/Canada Only) • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

 

 

 

 

®

PDS-1313B1

OPT210

 

 

 

 

 

 

 

 

 

 

SPECIFICATIONS

At TA = +25°C, VS = ±15V, λ = 650nm, External RF = 1MΩ, RL = 10kΩ, unless otherwise noted.

 

 

 

OPT210P

 

 

 

 

 

OPT210W

 

 

PARAMETER

CONDITIONS

MIN

TYP

MAX

UNITS

 

 

 

 

 

 

RESPONSIVITY

λ = 650nm

 

 

 

 

Photodiode Current

 

0.45

 

A/W

Unit-to-Unit Variation

λ = 650nm, External RF = 1MΩ

 

±5

 

%

Voltage Output

 

0.45

 

V/μW

Nonlinearity

 

 

0.01

 

% of FS

Photodiode Area

(0.09 x 0.09in)

 

0.008

 

in2

 

(2.29 x 2.29mm)

 

5.2

 

mm2

DARK ERROR, RTO

 

 

±2

±10

 

Offset Voltage

 

 

mV

vs Temperature

 

 

±35

 

μV/°C

vs Power Supply

VS = ±2.25V to ±18V

 

100

1000

μV/V

Voltage Noise

BW = 0.01Hz to 100kHz

 

160

 

μVrms

FREQUENCY RESPONSE

External RF = 1MΩ

 

 

 

 

Bandwidth

 

300

 

kHz

Rise Time

10% to 90%

 

1.2

 

μs

Settling Time, 1%

FS to Dark step

 

3

 

μs

0.1%

 

 

8

 

μs

0.01%

 

 

20

 

μs

Overload Recovery

100% Overdrive

 

7

 

μs

OUTPUT

RL = 10kΩ

 

 

 

 

Voltage Output, Positive

(V+)–1.25

(V+)–0.75

 

V

Positive

RL = 5kΩ

 

(V+)–1

 

 

Negative(1)

RL = 10kΩ

–0.4

–0.5

 

V

Capacitive Load, Stable Operation

 

 

500

 

pF

Short-Circuit Current(2)

 

 

+50

 

mA

POWER SUPPLY

 

±2.25

 

±18

 

Operating Range

 

 

V

Quiescent Current

 

 

+2.0/–1.7

±4

mA

TEMPERATURE RANGE

 

 

 

 

°C

Specification

 

0

 

70

Operating

 

0

 

70

°C

Storage

 

–25

 

85

°C

θJA

 

 

100

 

°C/W

NOTES: (1) Output typically swings to 0.5V below the voltage applied to the non-inverting input terminal, which is normally connected to ground. (2) Positive current (sourcing) is limited. Negative current (sinking) is not limited.

PHOTODIODE SPECIFICATIONS

 

 

 

 

PHOTODIODE

 

 

PARAMETER

CONDITIONS

MIN

TYP

MAX

UNITS

 

 

 

 

 

 

in2

Photodiode Area

(0.09 x 0.09in)

 

0.008

 

 

(2.29 x 2.29mm)

 

5.2

 

mm2

Current Responsivity

λ = 650nm

 

0.45

 

A/W

 

 

 

 

865

 

μA/W/cm2

Dark Current

VD = –1.2V

 

70

 

pA

vs Temperature

 

 

 

Doubles every 10°C

 

 

Capacitance

VD = –1.2V

 

550

 

pF

Effective Capacitance(1)

VD = –1.2V

 

10

 

pF

NOTES: (1) Effect of photodiode capacitance is reduced by internal buffer bootstrap drive. See text

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

®

 

OPT210

2

 

OP AMP SPECIFICATIONS

Op amp specifications provided for comparative information only.

 

 

 

OP AMP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PARAMETER

CONDITIONS

MIN

TYP

MAX

UNITS

INPUT

 

 

 

 

 

 

 

 

 

 

Offset Voltage

 

 

±2

 

mV

vs Temperature

 

 

±35

 

mV/°C

vs Power Supply

 

 

100

 

mV/V

Input Bias Current

 

 

 

 

 

 

 

 

 

 

Inverting Input

 

 

15

 

pA

vs Temperature

 

 

Doubles every 10°C

 

 

 

 

 

 

 

Non-inverting Input

 

 

300

 

mA

 

 

 

 

 

 

 

 

 

 

 

NOISE

 

 

 

 

 

 

 

 

 

 

Voltage Noise

 

 

 

 

 

 

 

 

 

 

f = 10Hz

 

 

20

 

nV/Ö

Hz

 

 

f = 100Hz

 

 

9

 

nV/Ö

Hz

 

f = 1kHz

 

 

6

 

nV/Ö

Hz

 

Current Noise Density, Inverting Input

BW = 0.01Hz to 100kHz

 

0.8

 

fA/Ö

Hz

 

 

 

 

 

 

 

 

 

 

 

 

INPUT VOLTAGE RANGE

 

 

 

 

 

 

 

 

 

 

Common-Mode Input Range(1)

 

 

VS±2.25

 

V

Common-Mode Rejection

 

 

65

 

dB

 

 

 

 

 

 

 

 

 

 

 

INPUT IMPEDANCE

 

 

 

 

 

 

 

 

 

 

Inverting Input Impedance

 

 

3x1010||3

 

W || pF

Non-Inverting Input Impedance

 

 

250

 

kW

 

 

 

 

 

 

 

 

 

 

 

OPEN-LOOP GAIN

 

 

 

 

 

 

 

 

 

 

Open-Loop Voltage Gain

VO = 0V to +13.75V

 

70

 

dB

FREQUENCY RESPONSE

 

 

 

 

 

 

 

 

 

 

Bandwidth, Small Signal

 

 

35

 

MHz

Rise Time, Large Signal

10% to 90%

 

25

 

ns

Settling Time, 1%

10V step

 

240

 

ns

0.1%

 

 

390

 

ns

0.01%

 

 

800

 

ns

Overload Recovery

100% Overdrive

 

7

 

ms

 

 

 

 

 

 

 

 

 

 

 

OUTPUT

 

 

 

 

 

 

 

 

 

 

Voltage Output, Positive

RL = 10kW

(V+)–1.25

(V+)–0.75

 

V

Positive

RL = 5kW

 

(V+)–1

 

 

 

 

 

 

 

Negative(1)

RL = 10kW

–0.4

–0.5

 

V

Capacitive Load, Stable Operation

 

 

500

 

pF

Short-Circuit Current(2)

 

 

+50

 

mA

POWER SUPPLY

 

 

 

 

 

 

 

 

 

 

Operating Voltage

 

±2.25

 

±18

V

Quiescent Current

 

 

+1.7/–1.4

±4

mA

 

 

 

 

 

 

 

 

 

 

 

NOTES: (1) Output typically swings to 0.5V below the voltage applied to the non-inverting input terminal, which is normally connected to ground. (2) Positive current (sourcing) is limited. Negative current (sinking) is not limited.

BUFFER SPECIFICATIONS

Buffer specifications provided for comparative information only.

 

 

 

BUFFER

 

 

 

 

 

 

 

 

PARAMETER

CONDITIONS

MIN

TYP

MAX

UNITS

INPUT

 

 

 

 

 

Offset Voltage(1)

 

 

–1.2

 

V

Input Bias Current

 

 

15

 

pA

vs Temperature

 

 

Doubles every 10°C

 

W || pF

Input Impedance

 

 

1011||3

 

FREQUENCY RESPONSE

 

 

 

 

 

Bandwidth, Small Signal

 

 

500

 

MHz

 

 

 

 

 

 

OUTPUT

 

 

 

 

 

Current

 

 

±200

 

mA

Voltage Gain

 

 

0.99

 

V/V

 

 

 

 

 

 

POWER SUPPLY

 

 

 

 

 

Operating Range

 

±2.25

 

±18

V

Quiescent Current

 

 

±0.3

 

mA

NOTE: (1) Intentional voltage offset to reverse bias photodiode.

®

3

OPT210

 

 

PIN CONFIGURATIONS

Top View

 

 

 

 

DIP

 

 

 

 

V+

1

 

8

Common

 

 

 

 

 

 

 

 

 

 

 

 

–In

2

 

7

NC

 

 

 

(1)

 

 

 

 

 

 

 

V–

3

6

NC

 

 

 

 

 

 

 

 

 

 

 

 

 

NC

4

 

5

Output

 

 

 

 

 

 

 

 

 

 

NOTE: (1) Photodiode location.

 

 

 

 

 

 

Top View

 

 

 

 

SIP

Common

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V+

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–In

 

3

(1)

 

 

 

 

 

 

 

 

 

 

 

 

V–

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTE: (1) Photodiode location.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage ...................................................................................

 

±18V

Input Voltage Range (Common Pin)

.................................................... ±VS

Output Short-Circuit (to ground) ...............................................

Continuous

Operating Temperature: P, W ...........................................

–25 ° C to +85°C

Storage Temperature:

P, W ...........................................

–25 ° C to +85°C

Junction Temperature:

P, W ..........................................................

+85°C

Lead Temperature (soldering, 10s) ................................................

+300°C

(Vapor-Phase Soldering Not Recommended on Plastic Packages)

PACKAGE INFORMATION

 

 

PACKAGE DRAWING

PRODUCT

PACKAGE

NUMBER(1)

OPT210P

8-Pin Plastic DIP

006-5

OPT210P-J

8-Lead Surface Mount(2)

006-6

OPT210W

5-Pin Plastic SIP

321-1

 

 

 

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book. (2) 8-pin DIP with leads formed for surface mounting.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

MOISTURE SENSITIVITY AND SOLDERING

Clear plastic does not contain the structural-enhancing fillers used in black plastic molding compound. As a result, clear plastic is more sensitive to environmental stress than black plastic. This can cause difficulties if devices have been stored in high humidity prior to soldering. The rapid heating during soldering can stress wire bonds and cause failures. Prior to

soldering, it is recommended that plastic devices be baked-out at 85°C for 24 hours.

The fire-retardant fillers used in black plastic are not compatible with clear molding compound. The OPT210 plastic packages cannot meet flammability test, UL-94.

®

 

OPT210

4

 

TYPICAL PERFORMANCE CURVES

At TA = +25°C, VS = ±15V, λ = 650nm, unless otherwise noted.

NORMALIZED SPECTRAL RESPONSIVITY

Output

1.0

 

 

 

 

 

 

 

 

 

0.8

 

 

 

 

 

 

 

(0.48A/W)

 

 

 

 

 

650nm

 

 

Voltage

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(0.45A/W)

 

 

0.6

 

 

 

 

 

 

 

 

 

or

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Current

0.4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Normalized

0.2

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

200

300

400

500

600

700

800

900

1000 1100

Wavelength (nm)

VOLTAGE RESPONSIVITY vs RADIANT POWER

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

Ω

 

 

 

 

 

 

 

 

 

(V)

 

 

10M

 

 

 

 

 

 

 

 

 

 

 

 

=

 

Ω

 

 

 

 

 

 

 

Voltage

 

R

F

 

 

 

 

 

 

 

 

 

 

 

 

 

1M

 

 

 

 

 

 

 

 

 

 

 

 

=

 

Ω

 

 

 

 

 

0.1

 

 

R

F

 

 

 

 

 

 

 

 

 

 

 

 

100k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output

 

 

 

 

 

 

=

 

Ω

 

 

 

 

 

 

 

 

 

R

F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10k

 

 

 

 

0.01

 

 

 

 

 

 

 

=

 

Ω

 

 

 

 

 

 

 

 

 

R

F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

1k

λ = 650nm

 

 

 

 

 

 

 

 

 

 

 

R

F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.001

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.01

 

 

0.1

 

 

 

1

 

 

10

100

1k

Radiant Power (µW)

VOLTAGE RESPONSIVITY vs IRRADIANCE

 

10

 

 

 

 

 

 

 

 

 

 

 

(V)

1

 

 

Ω

 

 

 

 

 

 

 

 

 

 

=

10M

Ω

 

 

 

 

 

 

 

Voltage

 

 

 

 

 

 

 

 

 

 

 

F

 

 

 

 

 

 

 

 

 

R

 

 

1M

 

Ω

 

 

 

 

 

0.1

 

 

=

 

 

 

 

 

 

 

 

R F

 

 

 

 

 

 

 

Output

 

 

 

 

 

=

100k

 

Ω

 

 

 

 

 

 

 

R

F

 

 

10k

 

 

 

0.01

 

 

 

 

 

=

 

Ω

 

 

 

 

 

 

 

R

F

 

 

 

 

 

 

 

 

 

 

 

1k

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

R

F

λ = 650nm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.001

 

 

 

 

 

 

 

 

 

 

 

 

0.001

 

0.01

 

0.1

 

1

 

10

100

 

 

 

 

 

Irradiance (W/m2)

 

 

VOLTAGE OUTPUT RESPONSIVITY vs FREQUENCY

 

100

 

RF = 100MΩ

 

 

 

 

 

 

 

(V/μW)

10

RF = 10MΩ

 

 

 

 

 

 

 

 

RF = 1MΩ, CF = 0.5pF

 

 

Responsivity

1

 

 

 

 

 

 

0.1

RF = 100kΩ, CF = 1.8pF

 

 

 

 

 

 

 

 

0.01

 

 

 

 

 

1k

10k

100k

1M

10M

Frequency (Hz)

 

 

 

RESPONSE vs INCIDENT ANGLE

 

 

 

1.0

 

 

 

 

 

1.0

 

 

0.8

θX

SIP Package

θY

 

θX

0.8

(dB)

 

θY

 

 

 

 

 

 

ResponseRelative

 

 

 

 

 

 

RejectionSupplyPower

0.6

 

 

 

 

 

0.6

 

 

 

 

 

 

 

 

0.4

θX

Plastic

θY

 

 

0.4

 

 

DIP Package

 

 

 

 

0.2

 

 

 

 

 

0.2

 

 

0

 

 

 

 

 

0

 

 

 

0

±20

 

±40

±60

±80

 

 

 

 

 

Incident Angle (°)

 

 

 

POWER SUPPLY REJECTION vs FREQUENCY

90

80

70

60

 

50

V–

 

40

30

20

V+

10

0

–10

1

10

100

1k

10k

100k

1M

10M

Frequency (Hz)

®

5

OPT210

 

 

TYPICAL PERFORMANCE CURVES (CONT)

At TA = +25°C, VS = ±15V, λ = 650nm, unless otherwise noted.

Quiescent Current (mA)

 

 

 

 

 

 

 

 

 

 

 

 

OUTPUT NOISE VOLTAGE

 

 

 

QUIESCENT CURRENT vs TEMPERATURE

 

10–2

 

 

vs MEASUREMENT BANDWIDTH

 

 

3

 

 

 

 

 

 

 

 

 

Dashed lines indicate

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

noise measured beyond

 

 

 

 

 

 

 

 

 

 

 

 

 

10–3

 

the signal bandwidth.

 

 

 

 

 

 

IQ+

 

 

 

 

 

(Vrms)

 

RF = 10MΩ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

IQ

 

VS

= ±15V

 

 

10–4

RF = 100MΩ

 

 

 

 

 

 

 

 

 

 

Voltage

10–5

 

 

 

 

 

 

 

 

 

I +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q

 

 

 

 

 

Noise

 

 

 

 

 

 

 

 

1

 

IQ

 

VS = ±2.25V

 

 

 

 

 

 

RF = 100kΩ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10–6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RF = 10kΩ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RF = 1MΩ

 

 

0

 

 

 

 

 

 

 

 

10–7

 

 

 

 

 

 

 

–75

–50

–25

0

25

50

75

100

125

 

10

100

1k

10k

100k

1M

10M

 

 

 

Temperature (°C)

 

 

 

 

 

 

Frequency (Hz)

 

 

SMALL-SIGNAL RESPONSE, RF = 1MΩ

Measurement BW = 1MHz

20mV/div

 

2V/div

 

 

 

5μs/div

 

 

 

 

 

 

 

 

 

 

NOISE EFFECTIVE POWER

 

 

 

 

 

 

 

 

 

vs MEASUREMENT BANDWIDTH

 

10–7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dashed lines indicate

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10–8

 

noise measured beyond

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the signal bandwidth.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Power (W)

10–9

 

 

 

 

λ = 650nm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10–10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EffectiveNoise

10–11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10–12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10–13

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10–14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

100

 

 

 

1k

10k

100k

Frequency (Hz)

LARGE-SIGNAL RESPONSE, RF = 1MΩ

5µs/div

RF = 10kΩ

RF = 100kΩ

RF = 1MΩ

RF = 10MΩ

RF = 100MΩ

1M 10M

®

 

OPT210

6

 

APPLICATIONS INFORMATION

Basic operation of the OPT210 is shown in Figure 1. Power supply bypass capacitors should be connected near the device pins as shown. Noise performance of the OPT210 can be degraded by the high frequency noise on the power supplies. Resistors in series with the power supply pins as shown can be used (optional) to help filter power supply noise

An external feedback resistor, RF, is connected from –In to the VO terminal as shown in Figure 1. Feedback resistors of 1MW or less require parallel capacitor, CF. See the table of values in Figure 1.

(paracitic capacitance)

+15V

 

 

 

 

For RF > 2MΩ,

 

 

 

 

 

CF

 

100Ω

 

 

 

use series-connected

1μF

 

 

 

resistors. See text.

+

 

 

 

 

 

 

1

(2)

2

(3)

 

RF

 

 

 

 

 

 

OPT210

 

 

 

 

 

 

5

 

 

 

 

 

 

VO

λ

 

 

+1

 

 

(5)

 

 

 

 

(0V to 14V)

 

 

 

 

 

 

 

 

 

8

(1)

3

(4)

 

 

 

 

 

100Ω

1μF

 

 

 

 

 

 

+

Optional series resistors filter

 

power supply noise. See text.

–15V

 

 

 

 

 

 

 

 

 

 

RF

CF (min)

 

BANDWIDTH

 

10MΩ

(1)

 

70kHz

 

1MΩ

0.5pF

 

300kHz

 

100kΩ

1.8pF

 

900kHz

 

10kΩ

10pF

 

1.6MHz

 

1kΩ

20pF

 

1.6MHz

NOTE: (1) Two series-connected resistors of RF /2 for low capacitance. See text.

FIGURE 1. Basic Operation.

Bandwidth varies with feedback resistor value. To achieve widest bandwidth with resistors greater than 1MW, use care to minimize parasitic parallel capacitance. For widest bandwidth with resistors greater than 2MW, connect two resistors (RF/2) in series. Airwiring this interconnection provides lowest capacitance. Although the OPT210 is usable with feedback resistors of 100MW and higher, with RF ³ 10MW the model OPT211 will provide lower dc errors and reduced noise.

The OPT210’s output voltage is the product of the photodiode current times the external feedback resistor, RF. Photodiode current, ID, is proportional to the radiant power or flux (in watts) falling on the photodiode. At a wavelength of 650nm (visible red) the photodiode Responsivity, RI, is approximately 0.45A/W. Responsivity at other wavelengths is shown in the typical performance curve “Responsivity vs Wavelength.”

The typical performance curve “Output Voltage vs Radiant Power” shows the response throughout a wide range of radiant power and feedback resistor values. The response curve “Output Voltage vs Irradiance” is based on the photodiode area of 5.23x10m6 2.

BOOTSTRAP BUFFER

The photodiode’s anode is driven by an internal high speed voltage buffer shown in Figure 1. This variation on the classical transimpedance amplifier circuit reduces the effects of photodiode capacitance. The effective photodiode capacitance is reduced from approximately 550pF to 10pF with this bootstrap drive technique. This improves bandwidth and reduces noise.

The output voltage of the buffer is offset approximately 1.2V below the input. This reverse biases the photodiode for reduced capacitance.

OP AMP

A special op amp design is used to achieve wide bandwidth. The op amp output voltage cannot swing lower than 0.5V below the non-inverting input voltage. Since photodiode current always produces a positive output voltage, this does not limit the required output swing.

The inverting input is designed for very low input bias current—approximately 15pA. The non-inverting input has much larger bias current—approximately 300 mA flows out of this terminal.

 

+15V

 

 

 

 

 

0.1μF

 

 

 

 

RF

 

 

 

 

 

 

 

 

 

 

1

(2)

2

(3)

1MΩ

 

 

 

 

 

 

 

 

OPT210

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

VO

λ

 

 

 

+1

 

 

(5)

 

 

 

 

 

Output voltage

 

 

 

 

 

 

 

 

 

 

 

 

 

offset by VA

+15V

 

 

 

8

(1)

3

(4)

 

 

 

 

100µA

 

 

 

 

300μA

0.1μF

 

 

 

 

 

 

1/2 REF200

 

 

 

 

 

–15V

 

 

 

 

 

 

200Ω

 

 

OPA131

VA

 

 

 

 

 

 

 

±20mV

 

 

200Ω

10kΩ

 

 

 

 

 

 

 

 

 

 

 

 

100µA

 

 

 

 

 

 

 

1/2 REF200

 

 

 

 

 

 

 

–15V

 

 

 

 

 

 

 

FIGURE 2. Adjustable Output Offset.

An offset voltage can be connected to the non-inverting input as shown in Figure 2. A voltage applied to the noninverting input is summed at the output. Because the noninverting input bias current is high (approximately 300mA), it should be driven by a low impedance such as the bufferconnected op amp shown.

®

7

OPT210

 

 

The OPT210 can be connected to operate from a single power supply as shown in Figure 3. The non-inverting input bias current flows through a zener diode to provide a bias voltage. The output voltage is referenced to this bias point.

+15V

 

 

 

 

 

 

0.1μF

 

 

 

 

RF

 

 

1

(2)

2

(3)

 

 

 

VO measured

 

 

 

 

 

OPT210

 

 

 

 

 

relative to 5.6V

 

 

 

 

 

 

 

zener voltage.

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

VO

λ

 

+1

 

 

 

(5)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(5.6V)

 

 

 

8

(1)

3

(4)

 

 

300μA

 

+

 

 

 

 

 

 

 

 

 

 

 

ZD1

 

1μF

 

 

ZD1: IN4626 5.6V

 

 

 

 

 

specified at IZ = 250μA

 

 

 

 

FIGURE 3. Single Power Supply Operation.

DARK ERRORS

The dark errors in the specification table include all sources with RF = 1MW. The dominant error source is the input offset voltage of the op amp. Photodiode dark current is approximately 70pA and the combined input bias current of the op amp and buffer is approximately 30pA. Photodiode dark current and input bias current total approximately 100pA at 25°C and double for each 10°C above 25°C. At 70°C, the total error current is approximately 2nA. With RF = 1MW, this would produce a 2mV offset voltage in addition to the initial amplifier offset voltage (10mV max) at 25°C. The dark output voltage can be trimmed to zero with the optional circuit shown in Figure 2.

LIGHT SOURCE POSITIONING

The OPT210 is tested with a light source that uniformly illuminates the full integrated circuit area, including the op amp. Although all IC amplifiers are light sensitive to some degree, the OPT210 op amp circuitry is designed to minimize this effect. Sensitive junctions are shielded with metal where possible. Furthermore, the photodiode area is very large compared to the op amp circuitry making these effects negligible.

If your light source is focused to a small area, be sure that it is properly aimed to fall on the photodiode. If a narrowly focused light source were to miss the photodiode and fall on the op amp circuitry, the OPT210 would not perform properly. The large photodiode area is clearly visible as a very dark area slightly offset from the center of the IC.

The incident angle of the light source also affects the apparent sensitivity in uniform irradiance. For small incident angles, the loss in sensitivity is due to the smaller effective light gathering area of the photodiode (proportional to the

®

cosine of the incident angle). At a greater incident angle, light is diffused by the side of the package. These effects are shown in the typical performance curve, “Response vs Incident Angle.”

LINEARITY PERFORMANCE

Photodiode current is very linear with radiant power throughout its range. Nonlinearity remains below approximately 0.01% up to 200mA. The anode buffer drive, however, is limited to approximately 200mA. This produces an abrupt limit to photodiode output current when radiant power reaches approximately 450mW.

Best linearity is achieved with the photodiode uniformly illuminated. A light source focused to a very small beam, illuminating only a small percentage of the photodiode area, may produce a higher nonlinearity.

NOISE PERFORMANCE

Noise performance of the OPT210 is determined by the op amp characteristics in conjunction with the feedback components, photodiode capacitance, and buffer performance. The typical performance curve “Output Noise Voltage vs Measurement Bandwidth” shows how the noise varies with RF and measured bandwidth (0.1Hz to the indicated frequency). The signal bandwidth of the OPT210 is indicated on the curves. Noise can be reduced by filtering the output with a cutoff frequency equal to the signal bandwidth.

Output noise increases in proportion to the square-root of the feedback resistance, while responsivity increases linearly with feedback resistance. So best signal-to-noise ratio is achieved with large feedback resistance. This comes with the trade-off of decreased bandwidth.

The noise performance of a photodetector is sometimes characterized by Noise Effective Power (NEP). This is the radiant power which would produce an output signal equal to the noise level. NEP has the units of radiant power (watts), or Watts/ÖHz to convey spectral information about the noise. The typical performance curve “Output Noise Voltage vs Measurement Bandwidth” is also scaled for NEP on the right-hand side.

 

OPT210

8

 

Соседние файлы в папке burr_brown