
Методы / Tdu_5
.pdf
Вариант 10
S |
|
|
x |
|
|
0 |
|
1 |
|
|
|
|
||
|
|
|
|
|
1 |
|
3 |
|
(1), 1 |
2 |
|
5 |
|
(2), 0 |
3 |
|
(3), 1 |
|
2 |
|
|
|
|
|
4 |
|
7 |
|
(4), 1 |
5 |
|
(5), 0 |
|
4 |
6 |
|
3 |
|
(6), 0 |
7 |
|
(7), 1 |
|
6 |
|
Вариант 11 |
|||
|
|
|
|
|
S |
|
|
x |
|
|
0 |
|
1 |
|
|
|
|||
|
|
|
||
|
|
|
|
|
1 |
|
(1), 1 |
|
7 |
2 |
|
(2), 1 |
|
5 |
3 |
|
1 |
|
(3), 1 |
4 |
|
1 |
|
(4), 1 |
5 |
|
6 |
|
(5), 1 |
6 |
|
(6), 1 |
|
3 |
7 |
|
2 |
|
(7), 0 |
|
Вариант 12 |
|||
|
|
|
|
|
S |
|
|
x |
|
|
0 |
|
1 |
|
|
|
|
||
|
|
|
||
1 |
|
2 |
|
(1), 0 |
2 |
|
(2), 0 |
|
4 |
3 |
|
(3), 1 |
|
5 |
4 |
|
3 |
|
(4), 0 |
5 |
|
6 |
|
(5), 0 |
6 |
|
(6), 1 |
|
7 |
7 |
|
2 |
|
(7), 1 |
|
Вариант 13 |
|||
|
|
|
|
|
S |
|
|
x |
|
|
0 |
|
1 |
|
|
|
|
||
|
|
|
||
1 |
|
(1), 1 |
|
3 |
2 |
|
(2), 0 |
|
4 |
3 |
|
2 |
|
(3), 1 |
4 |
|
5 |
|
(4), 1 |
5 |
|
(5), 0 |
|
7 |
6 |
|
(6), 1 |
|
4 |
7 |
|
6 |
|
(7), 0 |
Вариант 14
S |
|
|
x |
|
|
0 |
|
1 |
|
|
|
|
||
|
|
|
|
|
1 |
|
2 |
|
(1), 1 |
2 |
|
(2), 1 |
|
4 |
3 |
|
(3), 0 |
|
5 |
4 |
|
3 |
|
(4), 1 |
5 |
|
7 |
|
(5), 1 |
6 |
|
3 |
|
(6), 0 |
7 |
|
(7), 0 |
|
6 |
|
Вариант 15 |
|||
|
|
|
|
|
S |
|
|
x |
|
|
0 |
|
1 |
|
|
|
|||
|
|
|
||
|
|
|
||
1 |
|
2 |
|
(1), 0 |
2 |
|
(2), 0 |
|
5 |
3 |
|
(3), 1 |
|
7 |
4 |
|
(4), 1 |
|
1 |
5 |
|
3 |
|
(5), 0 |
6 |
|
(6), 0 |
|
1 |
7 |
|
4 |
|
(7), 1 |
|
Вариант 16 |
|||
|
|
|
|
|
S |
|
|
x |
|
|
0 |
|
1 |
|
|
|
|
||
|
|
|
||
1 |
|
(1), 0 |
|
2 |
2 |
|
3 |
|
(2), 0 |
3 |
|
(3), 0 |
|
4 |
4 |
|
6 |
|
(4), 1 |
5 |
|
1 |
|
(5), 1 |
6 |
|
(6), 1 |
|
5 |
7 |
|
6 |
|
(7), 0 |
|
Вариант 17 |
|||
|
|
|
|
|
S |
|
|
x |
|
|
0 |
|
1 |
|
|
|
|
||
|
|
|
||
1 |
|
4 |
|
(1), 1 |
2 |
|
5 |
|
(2), 0 |
3 |
|
6 |
|
(3), 0 |
4 |
|
(4), 0 |
|
2 |
5 |
|
(5), 1 |
|
3 |
6 |
|
(6), 0 |
|
1 |
7 |
|
(7), 1 |
|
2 |
Вариант 18
S |
|
|
x |
|
|
0 |
|
1 |
|
|
|
|
||
|
|
|
|
|
1 |
|
2 |
|
(1), 0 |
2 |
|
(2), 0 |
|
3 |
3 |
|
4 |
|
(3), 1 |
4 |
|
(4), 1 |
|
5 |
5 |
|
7 |
|
(5), 1 |
6 |
|
4 |
|
(6), 0 |
7 |
|
(7), 1 |
|
6 |
|
Вариант 19 |
|||
|
|
|
|
|
S |
|
|
x |
|
|
0 |
|
1 |
|
|
|
|||
|
|
|
||
|
|
|
||
1 |
|
7 |
|
(1), 1 |
2 |
|
(2), 1 |
|
6 |
3 |
|
(3), 0 |
|
1 |
4 |
|
5 |
|
(4), 0 |
5 |
|
(5), 1 |
|
6 |
6 |
|
3 |
|
(6), 1 |
7 |
|
(7), 0 |
|
4 |
|
Вариант 20 |
|||
|
|
|
|
|
S |
|
|
x |
|
|
0 |
|
1 |
|
|
|
|
||
|
|
|
||
1 |
|
(1), 0 |
|
3 |
2 |
|
(2), 0 |
|
4 |
3 |
|
2 |
|
(3), 0 |
4 |
|
7 |
|
(4), 1 |
5 |
|
1 |
|
(5), 0 |
6 |
|
2 |
|
(6), 0 |
7 |
|
(7), 1 |
|
5 |
|
Вариант 21 |
|||
|
|
|
|
|
S |
|
|
x |
|
|
0 |
|
1 |
|
|
|
|
||
|
|
|
||
1 |
|
(1), 1 |
|
2 |
2 |
|
3 |
|
(2), 1 |
3 |
|
(3), 1 |
|
6 |
4 |
|
(4), 0 |
|
7 |
5 |
|
(5), 0 |
|
6 |
6 |
|
4 |
|
(6), 0 |
7 |
|
5 |
|
(7), 1 |
11

Вариант 22
S |
|
|
x |
|
|
0 |
|
1 |
|
|
|
|
||
|
|
|
|
|
1 |
|
2 |
|
(1), 0 |
2 |
|
(2), 1 |
|
3 |
3 |
|
5 |
|
(3), 1 |
4 |
|
7 |
|
(4), 0 |
5 |
|
(5), 0 |
|
4 |
|
|
|
|
|
6 |
|
5 |
|
(6), 1 |
7 |
|
(7), 1 |
|
6 |
|
Вариант 23 |
|||
|
|
|
|
|
S |
|
|
x |
|
|
0 |
|
1 |
|
|
|
|||
|
|
|
||
|
|
|
|
|
1 |
|
3 |
|
(1), 1 |
2 |
|
4 |
|
(2), 1 |
3 |
|
(3), 0 |
|
2 |
|
|
|
|
|
4 |
|
(4), 1 |
|
5 |
5 |
|
6 |
|
(5), 0 |
6 |
|
(6), 0 |
|
1 |
7 |
|
(7), 1 |
|
5 |
|
Вариант 24 |
|||
|
|
|
|
|
S |
|
|
x |
|
|
|
|
|
|
|
0 |
|
1 |
|
|
|
|
||
|
|
|
||
1 |
|
3 |
|
(1), 0 |
2 |
|
4 |
|
(2), 0 |
3 |
|
(3), 1 |
|
2 |
4 |
|
(4), 0 |
|
6 |
5 |
|
(5), 0 |
|
7 |
6 |
|
5 |
|
(6), 1 |
7 |
|
3 |
|
(7), 1 |
|
Вариант 25 |
|||
|
|
|
|
|
S |
|
|
x |
|
|
0 |
|
1 |
|
|
|
|
||
|
|
|
||
1 |
|
2 |
|
(1), 1 |
2 |
|
(2), 1 |
|
3 |
3 |
|
4 |
|
(3), 1 |
4 |
|
(4), 1 |
|
5 |
5 |
|
6 |
|
(5), 0 |
6 |
|
(6), 0 |
|
1 |
7 |
|
(7), 0 |
|
3 |
12
Вариант 26
S |
|
|
x |
|
|
0 |
|
1 |
|
|
|
|
||
|
|
|
|
|
1 |
|
6 |
|
(1), 0 |
2 |
|
(2), 0 |
|
3 |
3 |
|
4 |
|
(3), 0 |
4 |
|
(4), 1 |
|
5 |
5 |
|
6 |
|
(5), 1 |
6 |
|
(6), 1 |
|
7 |
|
|
|
|
|
7 |
|
2 |
|
(7), 1 |
|
Вариант 27 |
|||
|
|
|
|
|
S |
|
|
x |
|
|
0 |
|
1 |
|
|
|
|||
|
|
|
||
|
|
|
||
1 |
|
(1), 1 |
|
3 |
2 |
|
(2), 1 |
|
4 |
3 |
|
5 |
|
(3), 1 |
4 |
|
7 |
|
(4), 1 |
5 |
|
(5), 0 |
|
6 |
6 |
|
2 |
|
(6), 0 |
7 |
|
(7), 0 |
|
6 |
|
Вариант 28 |
|||
|
|
|
|
|
S |
|
|
x |
|
|
0 |
|
1 |
|
|
|
|
||
|
|
|
||
1 |
|
(1), 0 |
|
7 |
2 |
|
(2), 0 |
|
6 |
3 |
|
2 |
|
(3), 0 |
4 |
|
(4), 1 |
|
5 |
|
|
|
|
|
5 |
|
1 |
|
(5), 1 |
6 |
|
4 |
|
(6), 0 |
7 |
|
2 |
|
(7), 1 |
|
Вариант 29 |
|||
|
|
|
|
|
S |
|
|
x |
|
|
0 |
|
1 |
|
|
|
|
||
|
|
|
||
1 |
|
(1), 1 |
|
6 |
2 |
|
7 |
|
(2), 1 |
3 |
|
(3), 1 |
|
5 |
4 |
|
(4), 0 |
|
2 |
5 |
|
4 |
|
(5), 0 |
6 |
|
3 |
|
(6), 1 |
7 |
|
(7), 0 |
|
6 |
Вариант 30
S |
|
|
x |
|
|
0 |
|
1 |
|
|
|
|
||
|
|
|
|
|
1 |
|
(1), 0 |
|
2 |
2 |
|
4 |
|
(2), 0 |
3 |
|
7 |
|
(3), 0 |
4 |
|
(4), 1 |
|
3 |
5 |
|
1 |
|
(5), 1 |
6 |
|
4 |
|
(6), 1 |
7 |
|
(7), 1 |
|
5 |
|
Вариант 31 |
|||
|
|
|
|
|
S |
|
|
x |
|
|
0 |
|
1 |
|
|
|
|||
|
|
|
||
|
|
|
||
1 |
|
4 |
|
(1), 0 |
2 |
|
(2), 1 |
|
5 |
3 |
|
(3), 1 |
|
1 |
4 |
|
(4), 0 |
|
6 |
5 |
|
3 |
|
(5), 1 |
6 |
|
2 |
|
(6), 0 |
7 |
|
(7), 0 |
|
1 |
|
Вариант 32 |
|||
|
|
|
|
|
S |
|
|
x |
|
|
0 |
|
1 |
|
|
|
|
||
|
|
|
||
1 |
|
(1), 1 |
|
2 |
2 |
|
3 |
|
(2), 1 |
3 |
|
(3), 0 |
|
4 |
4 |
|
7 |
|
(4), 1 |
5 |
|
1 |
|
(5), 0 |
6 |
|
7 |
|
(6), 0 |
7 |
|
(7), 1 |
|
5 |
|
Вариант 33 |
|||
|
|
|
|
|
S |
|
|
x |
|
|
0 |
|
1 |
|
|
|
|
||
|
|
|
||
1 |
|
2 |
|
(1), 0 |
2 |
|
(2), 0 |
|
4 |
3 |
|
(3), 0 |
|
5 |
4 |
|
3 |
|
(4), 1 |
5 |
|
6 |
|
(5), 1 |
6 |
|
(6), 1 |
|
1 |
|
|
|
|
|
7 |
|
(7), 1 |
|
4 |
|
Вариант 34 |
|
|
Вариант 35 |
|
|
Вариант 36 |
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
S |
|
|
x |
|
S |
|
|
x |
|
S |
|
|
x |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
0 |
|
1 |
|
0 |
|
1 |
|
0 |
|
1 |
|||||
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
1 |
|
5 |
|
(1), 1 |
|
1 |
|
7 |
|
(1), 0 |
|
1 |
|
(1), 1 |
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
(2), 1 |
|
7 |
|
2 |
|
(2), 0 |
|
1 |
|
2 |
|
1 |
|
(2), 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
|
(3), 1 |
|
3 |
|
6 |
|
(3), 0 |
|
3 |
|
1 |
|
(3), 0 |
4 |
|
(4), 1 |
|
6 |
|
4 |
|
5 |
|
(4), 1 |
|
4 |
|
(4), 0 |
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
(5), 1 |
|
3 |
|
5 |
|
(5), 0 |
|
1 |
|
5 |
|
4 |
|
(5), 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
2 |
|
(6), 0 |
|
6 |
|
(6), 1 |
|
4 |
|
6 |
|
4 |
|
(6), 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
5 |
|
(7), 0 |
|
7 |
|
(7), 1 |
|
3 |
|
7 |
|
(7), 1 |
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Библиографический список
1. Сапожников В. В. Теория дискретных устройств железнодорожной автоматики, телемеханики и связи [Текст] / В. В. Сапожников, Ю. А. Кравцов, Вл. В. Сапожников; под ред. В. В. Сапожникова. – Москва : УМК МПС России,
2001. – 312 с. – ISBN 5-89035-051-X.
2. Поспелов Д. А. Логические методы анализа и синтеза схем [Текст] / Д. А. Поспелов. Изд. 3-е, перераб. и доп. – Москва : Энергия, 1974. – 368 с.
13
|
|
Содержание |
1 |
Основные понятия ..................................................................................................... |
2 |
2 |
Методика выполнения работы ................................................................................. |
9 |
3 |
Варианты заданий .................................................................................................... |
10 |
Библиографически список ......................................................................................... |
13 |
14
МЕТОД КОДИРОВАНИЯ СОСТОЯНИЙ АСИНХРОННЫХ КОНЕЧНЫХ АВТОМАТОВ
Методические указания к практическому занятию № 5 по дисциплине «Теория дискретных устройств»
Составители:
профессор САПОЖНИКОВ Валерий Владимирович профессор САПОЖНИКОВ Владимир Владимирович ассистент ЕФАНОВ Дмитрий Викторович
Редактор и корректор Г. Н. Кириллова Компьютерная верстка М. С. Савастеевой
План 2012 г., № 158
Подписано в печать с оригинал-макета 13.11.13 Формат 60×841/16. Бумага для множ. апп. Печать ризография.
Усл. печ. л. 0,875. Тираж 300 экз. Заказ 1142.
Петербургский государственный университет путей сообщения. 190031, СПб., Московский пр., 9.
Типография ПГУПС. 190031, СПб., Московский пр., 9.
15