
- •3. Закон химических эквивалентов. Молярные массы эквивалентов сложных веществ.
- •4. Волновые свойства электрона. Квантовые числа, s-,p-,d-,f-состояния электрона. Электронные орбитали.
- •5. Принцип Паули. Емкость энергетических уровней и подуровней атомов элементов.
- •6. Связь периодического закона со строением электронных оболочек атомов. Правило Клечковского. Энергетические ячейки. Правило Гунда.
- •7. Периодический закон д.И.Менделеева и периодическая система элементов: ряды, периоды, подгруппы, порядковый номер.
- •8. Периодическое изменение свойств химических элементов. Радиус атомов, сродство к электрону, энергия ионизации, электроотрицательность.
- •9. Образование химической связи. Энергия связи и длина связи.
- •10. Ковалентная (атомная) связь. Метод валентных связей. Возбужденные состояния атомов. Валентность.
- •11. Направленность ковалентной связи. Сигма и п-связи. Гибридизация атомных орбиталей.
- •12. Ионная (электронная) связь.
- •13. Представление о методе молекулярных орбиталей.
- •14. Полярная связь. Полярность молекул и их дипольный момент.
- •15. Донорно-акцепторный механизм ковалентной связи. Комплексные соединения.
- •16. Межмолекулярное взаимодействие. Водородная связь.
- •17. Система. Фаза. Компонент. Параметры. Функции состояния: внутренняя энергия и энтальпия. Стандартные условия.
- •18. Первое начало термодинамики. Закон Гесса как следствие 1-го начала термодинамики.
- •19. Стандартная энтальпия образования. Следствие из закона Гесса. Термохимические расчеты.
- •20. Зависимость теплового эффекта реакции от температуры.
- •21. Второе начало термодинамики. Понятие об энтропии. Расчет энтропии.
- •22. Объединенная формула 1 и 2 начала термодинамики. Свободная энергия Гиббса и Гельмгольца.
- •23. Условия самопроизвольного протекания химических реакций.
- •24. Изотерма химической реакции. Стандартное изменение свободной энергии.
- •25. Константа химического равновесия. Расчет Кр и Кс. Изотерма химической реакции.
- •26. Зависимость константы химического равновесия от температуры (изобара и изохора химической реакции).
- •27. Принцип подвижного равновесия (принцип Ле-Шателье).
- •28. Скорость химической реакции. Закон действующих масс. Константа скорости.
- •29. Кинетическая классификация по степени сложности. Обратимые и необратимые реакции.
- •30. Зависимость скорости реакции от температуры. Правило Вант-Гоффа. Уравнение Аррениуса.
- •31. Энергия активации химической реакции. Аналитический и графический метод расчета.
- •32. Скорость гетерогенной химической реакции.
- •33.Иницирование химической реакции. Катализ. Сущность гомогенного и гетерогенного катализа.
- •34.Дисперсные системы. Коллоидные растворы.
- •36. Физические и химические процессы при растворении. Растворимость твердых тел и жидкостей в жидкостях.
- •37. Растворимость газов в жидкостях. Закон Генри-Дальтона. Закон распределения.
- •38. Законы Рауля.
- •39.Электролитическая диссоциация. Степень диссоциации. Слабые электролиты.
- •40. Константы диссоциации. Закон разведения.
- •41. Сильные электролиты. Понятие активности и коэффициента активности.
- •42. Электролитическая диссоциация воды. Ионные произведения воды. Водородный показатель. Понятие об индикаторах.
- •43. Гидролиз солей.
- •44. Окислительно-восстановительные реакции. Ионно-электронный метод подбора коэффициентов в окислительно-восстановительных реакциях.
- •45. Возникновение скачка потенциала на границе раздела «металл-раствор». Равновесный электродный потенциал.
- •46. Медно-цинковый гальванический элемент. Процессы на электродах. Эдс.
- •47. Зависимость эдс гальванического элемента от природы реагирующих веществ, температуры и концентрации. Стандартная эдс.
- •48. Стандартный водородный электрод. Формула Нернста. Стандартный потенциал. Ряд напряжения.
- •49. Типы электродов и цепей. Окислительно-восстановительные электроды и цепи.
- •50. Электролиз. Последовательность разряда ионов на катоде и аноде.
- •51. Законы Фарадея. Выход по току.
- •52. Коррозия металлов. Химическая и электрохимическая коррозия.
- •53. Основные методы борьбы с коррозией.
- •54. Кристаллическое состояние вещества. Химическая связь в кристаллах.
- •55. Сущность физико-химического анализа. Правило фаз. Диаграмма состояния воды.
- •56.Основные принципы построения диаграммы плавкости бинарных систем. Термографический анализ. Кривая нагревания и охлаждения.
- •57.Диаграмма плавкости однокомпонентной системы на примере воды.
- •58. Поверхностные явления. Понятие поверхностного натяжения.
- •59. Адсорбция и абсорбция
- •60. Поверхностное натяжение растворов. Изотерма адсорбции.
- •Описание
- •61. Полимеры. Методы получения.
- •62. Материалы, получаемые на основе полимеров
21. Второе начало термодинамики. Понятие об энтропии. Расчет энтропии.
Второй закон используется для выяснения направления протекания процессов и положения равновесия.
Формулировки:
-невозможен самопроизвольный переход тепла от менее нагретого тела к более нагретому.
-невозможно создание вечного двигателя 2 рода, т.е. машины, которая периодически превращает тепло среды при постоянной температуре в работу.
-невозможен процесс, единственным результатом которого было бы превращение теплоты в работу.
Второе начало термодинамики для изолированных систем: в изолированных системах самопроизвольно идут только те процессы, которые сопровождаются возрастанием энтропии.
Энтропия – аддитивная величина, принимающая экстремальные значения при равновесии.
S=k*ln(W), где W – термодинамическая вероятность.
dS=δQ/T.
Окончательная формулировка: существует функция состояния – энтропия, приращение которой при обратимых процессах равно приведенному теплу; энтропия изолированной системы стремится к максимуму.
22. Объединенная формула 1 и 2 начала термодинамики. Свободная энергия Гиббса и Гельмгольца.
δA≤TdS-dU
при V,T=const Amax=T(S2-S1)-(U2-U1)=U1-TS1-(U2-TS2)=-∆F
F=U-TS (F-свободная энергия Гельмгольца)
При p,T=const
δA'max≤TdS-dU-pdV
A’max=T(S2-S1)-(U2-U1)-p(V2-V1)=(U1+pV1-TS1)-(U2+pV2-TS2)=-∆G
G=H-TS – свободная энергия Гиббса.
23. Условия самопроизвольного протекания химических реакций.
dF=dU-TdS-SdT
dG=dH-TdS-SdT=dU+pdV+Vdp-TdS-SdT
dU≤TdS-pdV
dF=TdS-pdV-TdS-SdT=-pdV-SdT
dG≤0
V,T=const dF≤0, ∆F<0 – самопроизвольное протекание (в прямом направлении)
P,T=const dG≤0, ∆G<0 – самопроизвольное протекание (в прямом направлении)
1) изменение свободной энергии не зависит от пути процесса
2) знак ∆ свободной энергии определяет направление реакции:
Если ∆<0, то à
∆>0, то ß
24. Изотерма химической реакции. Стандартное изменение свободной энергии.
Энтропия. Все материальные системы обнаруживают тенденцию к достижению максимального беспорядка. Если обратиться к приведенному выше примеру с горением метана, то мы убедимся, что изменение энтальпии намного превышает изменение энтропии. Таким образом, движущей силой рассматриваемой реакции является изменение энтальпии. Однако в эндотермических реакциях преобладающую роль играет изменение энтропии. Эти реакции протекают самопроизвольно, несмотря на то что система поглощает энергию.
Каким же образом следует сбалансировать между собой оба указанных выше фактора, т. е. учесть одновременно действие каждого из них? Это позволяет сделать особая термодинамическая функция состояния, которая называется свободной энергией или функцией Гиббса и обозначается буквой G. Функция Гиббса определяется с помощью уравнения (21), которое в более общем виде записывается так:
Таким образом, изменение свободной энергии Гиббса учитывает изменение энтальпии и изменение энтропии реакционной системы. Отметим, что энтропийный член включает в качестве множителя абсолютную температуру. Этот множитель позволяет учесть, что при высоких температурах материальные системы более раз-упорядочены, чем при низких температурах.
Уравнение изотермы
х.р.