
- •3. Закон химических эквивалентов. Молярные массы эквивалентов сложных веществ.
- •4. Волновые свойства электрона. Квантовые числа, s-,p-,d-,f-состояния электрона. Электронные орбитали.
- •5. Принцип Паули. Емкость энергетических уровней и подуровней атомов элементов.
- •6. Связь периодического закона со строением электронных оболочек атомов. Правило Клечковского. Энергетические ячейки. Правило Гунда.
- •7. Периодический закон д.И.Менделеева и периодическая система элементов: ряды, периоды, подгруппы, порядковый номер.
- •8. Периодическое изменение свойств химических элементов. Радиус атомов, сродство к электрону, энергия ионизации, электроотрицательность.
- •9. Образование химической связи. Энергия связи и длина связи.
- •10. Ковалентная (атомная) связь. Метод валентных связей. Возбужденные состояния атомов. Валентность.
- •11. Направленность ковалентной связи. Сигма и п-связи. Гибридизация атомных орбиталей.
- •12. Ионная (электронная) связь.
- •13. Представление о методе молекулярных орбиталей.
- •14. Полярная связь. Полярность молекул и их дипольный момент.
- •15. Донорно-акцепторный механизм ковалентной связи. Комплексные соединения.
- •16. Межмолекулярное взаимодействие. Водородная связь.
- •17. Система. Фаза. Компонент. Параметры. Функции состояния: внутренняя энергия и энтальпия. Стандартные условия.
- •18. Первое начало термодинамики. Закон Гесса как следствие 1-го начала термодинамики.
- •19. Стандартная энтальпия образования. Следствие из закона Гесса. Термохимические расчеты.
- •20. Зависимость теплового эффекта реакции от температуры.
- •21. Второе начало термодинамики. Понятие об энтропии. Расчет энтропии.
- •22. Объединенная формула 1 и 2 начала термодинамики. Свободная энергия Гиббса и Гельмгольца.
- •23. Условия самопроизвольного протекания химических реакций.
- •24. Изотерма химической реакции. Стандартное изменение свободной энергии.
- •25. Константа химического равновесия. Расчет Кр и Кс. Изотерма химической реакции.
- •26. Зависимость константы химического равновесия от температуры (изобара и изохора химической реакции).
- •27. Принцип подвижного равновесия (принцип Ле-Шателье).
- •28. Скорость химической реакции. Закон действующих масс. Константа скорости.
- •29. Кинетическая классификация по степени сложности. Обратимые и необратимые реакции.
- •30. Зависимость скорости реакции от температуры. Правило Вант-Гоффа. Уравнение Аррениуса.
- •31. Энергия активации химической реакции. Аналитический и графический метод расчета.
- •32. Скорость гетерогенной химической реакции.
- •33.Иницирование химической реакции. Катализ. Сущность гомогенного и гетерогенного катализа.
- •34.Дисперсные системы. Коллоидные растворы.
- •36. Физические и химические процессы при растворении. Растворимость твердых тел и жидкостей в жидкостях.
- •37. Растворимость газов в жидкостях. Закон Генри-Дальтона. Закон распределения.
- •38. Законы Рауля.
- •39.Электролитическая диссоциация. Степень диссоциации. Слабые электролиты.
- •40. Константы диссоциации. Закон разведения.
- •41. Сильные электролиты. Понятие активности и коэффициента активности.
- •42. Электролитическая диссоциация воды. Ионные произведения воды. Водородный показатель. Понятие об индикаторах.
- •43. Гидролиз солей.
- •44. Окислительно-восстановительные реакции. Ионно-электронный метод подбора коэффициентов в окислительно-восстановительных реакциях.
- •45. Возникновение скачка потенциала на границе раздела «металл-раствор». Равновесный электродный потенциал.
- •46. Медно-цинковый гальванический элемент. Процессы на электродах. Эдс.
- •47. Зависимость эдс гальванического элемента от природы реагирующих веществ, температуры и концентрации. Стандартная эдс.
- •48. Стандартный водородный электрод. Формула Нернста. Стандартный потенциал. Ряд напряжения.
- •49. Типы электродов и цепей. Окислительно-восстановительные электроды и цепи.
- •50. Электролиз. Последовательность разряда ионов на катоде и аноде.
- •51. Законы Фарадея. Выход по току.
- •52. Коррозия металлов. Химическая и электрохимическая коррозия.
- •53. Основные методы борьбы с коррозией.
- •54. Кристаллическое состояние вещества. Химическая связь в кристаллах.
- •55. Сущность физико-химического анализа. Правило фаз. Диаграмма состояния воды.
- •56.Основные принципы построения диаграммы плавкости бинарных систем. Термографический анализ. Кривая нагревания и охлаждения.
- •57.Диаграмма плавкости однокомпонентной системы на примере воды.
- •58. Поверхностные явления. Понятие поверхностного натяжения.
- •59. Адсорбция и абсорбция
- •60. Поверхностное натяжение растворов. Изотерма адсорбции.
- •Описание
- •61. Полимеры. Методы получения.
- •62. Материалы, получаемые на основе полимеров
47. Зависимость эдс гальванического элемента от природы реагирующих веществ, температуры и концентрации. Стандартная эдс.
1. Зависимость от природы.
2. Зависимость от концентрации.
3. Зависимость от температуры.
48. Стандартный водородный электрод. Формула Нернста. Стандартный потенциал. Ряд напряжения.
В наст. время невозможно рассчитать или экспериментально определить абсолютное значение скачка потенциала на отдельно взятом электроде. Поэтому значение потенциала на электроде всегда определяется по отношению к эталонному электроду, потенциал к-го условно принимается =0.В электрохимии таким электродом является нормальный водородный элемент (н.в.э.).Потенциал н.в.э. при опред-х условиях =0. В стеклянный сосуд сложной формы залит раствор серной кислоты такой концентрации, что [H+]»1 г-ион/л.Платиновая чернь (губчатая пластина) – платиновый электрод.Р=1атм.Водород омывает платину, растворяется в ней. Насыщенная водородом платина начинает вести себя как водородный электрод, т.е.
H++к « 1/2H2
2H+ЅH2
jH=0
Т.о. за величину электродного потенциала данного электрода принимается ЭДС гальванического элемента, составленного из исследуемого электрода и н.в.э. Электродному потенциалу присваевается знак, одинаковый со знаком заряда данного электрода в паре с н.в.э.
Например Zn в паре с н.в.э. заряжается отрицательно, а это значит, что потенциал Zn-го электрода равен ЭДС Zn-го водородного элемента с обратным знаком.
jZn=j0Zn+RT/nФ*ln aZn2+ jMe=j0Me+RT/nФ*ln[Men+] j0-стандартное значение потенциала.Т=298К(250С). jМе=j0Ме+0.059/n*lg[Men+]
Если все металлы выстроить в ряд повелечинам их j0, то мы получим т.н. ряд напряжений. В ряду напряжений помещен и jН=0. Все металлы, расположенные в ряду напряжений выше Н имеют j0<0, ниже - j0>0В водородном электроде протекает реакция: H++к « H – n=1 jH= j0H+0.059/1*lg[H+], j0H =0 по условию. jH =0.059lg[H+], pH=-lg[H+], jH=-0.059pH. потенциала более положительного электрода вычесть потенциал менее положительного. Cu – Zn: E=jCu-jZn=j0Cu-j0Zn+RT/nФ*ln([Cu2+]-[Zn2+])=E0 E0-RT/nФ*ln[Zn2+]/[Cu2+] n=2; E0=j0Cu-j0Zn=0.34-(-0.763)=1.103B;E0экспериментальное=1.087В, DE=0.016B-диффузионный скачок потенциалов на границе 2 растворов.
49. Типы электродов и цепей. Окислительно-восстановительные электроды и цепи.
1. Электроды 1 рода. Металлические, обратимые относительно катиона.
2. Металлические электроды, обратимые относительно аниона.
3. Газовые электроды, обратимые как относительно катионов, так и анионов.
4. Окислительно-восстановительные электроды.
Металлическая пластина не принимает участия, она токоотвод.
Типы цепей
1. Химические цепи – 2 разных металлических электрода (Al-Zn).
2. Окислительно-восстановительные цепи (2 ОВ-электрода)
ОВР течет самопроизвольно в сторону превращения сильного окислителя в слабый сопряженный окислитель, сильного восстановителя в слабый сопряженный восстановитель.
3. Концентрационные цепи.
Разные концентрации электролитов.