
- •Тема 1: Динамическая память и интеллектуальные указатели
- •1. Особенности использования динамической памяти (распределяемая память, heap, freestore), стека. Примеры использования.
- •2. Особенности выделения и освобождения памяти для автоматических глобальных и локальных объектов, статических глобальных и локальных объектов. Примеры использования.
- •3. Операторы new и delete при работе с динамической памятью. Свойства указателей, передаваемых оператору delete. Примеры использования.
- •4. Утечка памяти (memory leak). Потерянный указатель (dangling pointer, wild pointer). Примеры использования.
- •5. Проблемы, связанных с использованием операторов new и delete при управлении динамической памятью. Примеры использования.
- •6. Динамически создаваемые объекты (dynamically allocated objects). Интеллектуальные указатели (smart pointers): преимущества, недостатки, особенности использования, различия. Примеры использования.
- •8. Класс интеллектуального указателя shared_ptr. Методы класса указателя shared_ptr. Особенности и примеры использования.
- •9. Копирование и присваивание указателей shared_ptr. Примеры использования.
- •10. Создание и использование объектов интеллектуальных указателей. Примеры.
- •11. Функция make_shared(). Использование функции make_shared() для создания и инициализации объектов интеллектуальных указателей. Примеры использования.
- •12. Счетчик ссылок (reference count), счетчик слабых ссылок (weak count), функция-удалитель (deleter), выделитель памяти (allocator). Примеры использования.
- •13. Использование ключевого слова auto. Примеры использования.
- •14. Классы, ресурсы которых имеют динамическую продолжительность существования. Случаи их использования. Совместное использование данных двумя объектами. Примеры использования.
- •15. Использование оператора new для динамического резервирования памяти и инициализации объектов. Примеры использования.
- •17. Особенности создание пользовательского класса умного указателя (smart pointer). Перечень необходимых условий для реализации пользовательского класса умного указателя. Пример использования.
- •18. Особенности копирования, присваивания и удаления объектов при создании пользовательского класса умного указателя (smart pointer). Пример использования.
- •19. Размещающий оператор new (placement new). Передача ему объекта nothrow. Пример использования.
- •20. Особенности исчерпания памяти. Исключения, возникающие при исчерпании памяти. Пример использования.
- •21. Время жизни динамически создаваемых объектов. Примеры использования.
- •22. Присваивание указателю значения nullptr. Примеры использования.
- •23. Использование указателя shared_ptr совместно с оператором new. Примеры использования.
- •24. Особенности совместного использования обычных указателей и интеллектуальных. Примеры использования.
- •30. Передача в функцию и возврат из функции указателя типа unique_ptr. Примеры использования.
- •31. Использование класса auto_ptr. Особенности и пример использования.
- •32. Передача функции удаления указателю unique_ptr. Примеры использования.
- •33. Класс интеллектуального указателя weak_ptr. Методы класса указателя weak_ptr. Особенности и пример использования.
- •34. Динамические массивы. Особенности работы с динамическими массивами. Особенности резервирования памяти для массивов. Динамическое резервирование пустого массива. Примеры использования
- •35. Оператор new и динамические массивы. Класс bad_array_new_length. Примеры использования.
- •36. Инициализация массива динамически созданных объектов встроенных и пользовательских типов. Примеры использования.
- •37. Особенности освобождение памяти, выделенной для динамических массивов. Примеры использования.
- •38. Взаимодействие интеллектуальных указателей (класс unique_ptr) и динамических массивов. Примеры использования.
- •39. Класс Allocator и специальные алгоритмы. Примеры использования.
- •40. Алгоритмы копирования и заполнения неинициализированной памяти. Примеры использования
- •1. Особенности обработки исключительных ситуаций с использованием функции abort() и exit(). Преимущества и недостатки. Примеры использования.
- •2. Особенности обработки исключительных ситуаций с помощью возврата кода ошибки. Преимущества и недостатки. Примеры использования.
- •4. Роль типа исключения в его обработке. Охранный блок, блок перехвата. Использование механизма обработки исключений. Примеры использования.
- •5. Использование объектов классов в качестве исключений. Одинаковые свойства и различия операторов throw и return. Примеры использования.
- •7. Алгоритм раскручивания стека. Раскручивание стека при нормальном и аварийном завершении программы. Пример использования.
- •8. Понятие абсолютного обработчика, его синтаксис, особенности использования. Пример использования.
- •9. Класс exception. Методы класса exception. Использование наследования класса exception. Пример использования.
- •11. Исключение bad_alloc и операция new. Примеры использования. Использование нулевого указателя и операции new. Примеры использования.
- •12. Использование исключений вместе с классами и наследованием. Особенности использования вложенных классов.
- •13. Потеря исключений. Неперехваченное исключение. Использование функций terminate() и set_terminate().
- •14. Непредвиденное исключение. Использование функций unexpected() и set_unexpected(). Исключение типа std::bad_exception.
- •15. Предостережения относительно использования исключений. Использование и управление исключениями в современных языках программирования.
- •4. Изменение основания системы счисления, используемого для отображения данных. Набор констант типа fmtflags (константы форматирования), решаемые ими задачи.
- •7. Istream как псевдоним шаблона класса basic_istream. Взаимосвязь основных классов ввода/вывода. Ввод данных с помощью объекта cin
- •Istream и ostream как специализации для специализаций char. Wistream и wostream как специализации для типа wchar_t.
- •10. Класс basic_iostream. Iostream как псевдоним шаблона класса basic_iostream. Взаимосвязь основных классов ввода/вывода
- •12. Объекты wcout, wcin, wclog, wcerr, cout, cin, clog, cerr. Особенности их создания и использования.
- •14. Заголовочный файл iomanip. Функции setprecision(), setfill(), setw(). Использование манипуляторов из файла iomanip.
- •Тема 4: Файловый ввод-вывод
- •Понятие файла. Бинарные и текстовые файлы. Преимущества, недостатки, особенности использования.
- •Аргументы командной строки (argc, argv). Обработка данных командной строки. Примеры их использования.
- •Проверка состояния файлового потока. Метод is_open(). Особенности открытия нескольких файлов. Пример их использования.
- •Константы типа seekdir: ios_base::beg, ios_base::cur, ios_base::end. Примеры их использования.
- •Особенности работы с временными файлами. Функция tmpnam_s(). Пример её использования.
- •Класс string. Внутреннее форматирование с использованием классов ostringstream, istringstream. Примеры их использования.
- •Тема 5: Стандартная библиотека шаблонов stl.
- •1. Базовые принципы библиотеки шаблонов stl. Использование библиотеки stl. Заголовочные файлы complex, random.
- •4. Иерархия и концепция итераторов. Необходимость использования каждого типа итераторов. Указатель как итератор. Применение алгоритмов stl к контейнерам, не относящимся к библиотеке stl.
- •5. Входные, выходные, однонаправленные, двунаправленные итераторы, итераторы произвольного доступа: понятие, требования, особенности использования, направленность.
- •6. Шаблонный класс vector, deque, stack. Особенности, методы, принципы работы, возможности
- •7. Шаблонный класс array, valarray. Особенности, методы, принципы работы, возможности
- •8. Шаблонный класс list, forward_list. Особенности, методы, принципы работы, возможности
- •9. Шаблонный класс queue, priority_queue. Особенности, методы, принципы работы, возможности
- •10. Шаблонные классы set и multiset. Особенности, методы, принципы работы, возможности
- •11. Шаблонные классы map и multimap. Особенности, методы, принципы работы, возможности
- •12. Понятие функциональных объектов (функторов). Концепции функторов: генератор, унарная функция, бинарная функция, предикат, бинарный предикат. Предопределенные функторы
- •14. Группы алгоритмов. Алгоритмы «по месту», копирующие алгоритмы. Сравнение функций stl и методов контейнеров stl
- •15. Математические операции и их эквиваленты-функторы. Понятие полного упорядочения и квазиупорядочения
- •17. Понятие обобщенного программирования. Связь обобщенного программирования и библиотеки stl.
- •18. Использование алгоритма copy(), классов ostream_iterator и istream_iterator в качестве моделей входных и входных итераторов
- •19. Итераторы специального назначения: reverse_iterator, back_insert_iterator, front_insert_iterator, insert_iterator
- •Тема 6: Обзор Java. Введение в ооп в Java.
- •2. Обзор и отличительные особенности языка Java. Программная платформа и виртуальная машина Java. Особенности разработки и исполнения объектно-ориентированных приложений на Java.
- •3. Сборка мусора в Java. Пакет jdk: особенности, содержимое, необходимость использования, версии. Ide для работы на Java.
- •4. Особенности настройки работы платформы Java и запуск приложения на языке Java без ide.
- •5. Особенности лексики Java: литералы, идентификаторы, разделители, комментарии, ключевые слова.
- •6. Примитивные типы данных Java. Типизация. Целые числа (byte, short, int, long), числа с плавающей точкой (float, double), символы.
- •7. Переменные. Объявление переменной. Преобразование и приведение типов. Автоматическое приведение и продвижение типов в выражениях. Логические выражения. Область и срок действия переменной.
- •8. Операции (арифметические, поразрядные, отношения, логические (укороченные, обычные)). Операция присваивания. Предшествование операций.
- •9. Управляющие операторы (выбора, цикла, перехода). Разновидность цикла for в стиле for each. Комментарии в Java. Оператор instanceof.
- •Принципы объектно-ориентированного программирования в Java.
6. Примитивные типы данных Java. Типизация. Целые числа (byte, short, int, long), числа с плавающей точкой (float, double), символы.
ПРИМИТИВНЫЕ ТИПЫ
В языке Java определены восемь примитивных типов данных: byte, short, int, long, char, float, double и boolean. Примитивные типы называют также простыми. Примитивные типы можно разделить на следующие четыре группы.
Примитивные типы представляют одиночные значения, а не сложные объекты. Язык Java является полностью объектноориентированным, кроме примитивных типов данных.
ЦЕЛЫЕ ЧИСЛА Для целых чисел в языке Java определены четыре типа: byte, short, int и long. Все эти типы данных представляют целочисленные значения со знаком: как положительные, так и отрицательные. В Java не поддерживаются только положительные целочисленные значения без знака.
ТИП BYTE Наименьшим по длине является целочисленный тип byte. Это 8- разрядный тип данных со знаком и диапазоном допустимых значений от -128 до 127. Переменные типа byte особенно удобны для работы с потоками вводавывода данных в сети или файлах. Они удобны также при манипулировании необработанными двоичными данными, которые могут и не быть непосредственно совместимы с другими встроенными типами данных в Java. Для объявления переменных типа byte служит ключевое слово byte.
ТИП SHORT Тип short представляет 16-разрядные целочисленные значения со знаком в пределах от -32 768 до 32 767. Этот тип данных применяется в Java реже всех остальных.
ТИП INT Наиболее употребляемым целочисленным типом является int. Это тип 32-разрядных целочисленных значений со знаком в пределах от - 2 147 483 648 до 2 147 483 647. Переменные типа int зачастую используются для управления циклами и индексирования массивов.
ТИП LONG Этот тип 64-разрядных целочисленных значений со знаком удобен в тех ситуациях, когда длины типа int недостаточно для хранения требуемого значения.
ЧИСЛА С ПЛАВАЮЩЕЙ ТОЧКОЙ Числа с плавающей точкой, называемые также действительными чисами, используются при вычислении выражений, которые требуют результата с точностью до определенного знака после десятичной точки. Существуют два числовых типа с плавающей точкой: float и double, которые соответственно представляют числа одинарной и двойной точности
ТИП FLOAT Тип float определяет числовое значение с плавающей точкой однарной точности, для хранения которого в оперативной памяти требуется 32 бита. Этот тип данных удобен в тех случаях, когда требуется числовое значение с дробной частью, но без особой точности.
ТИП DOUBLE Для хранения числовых значений с плавающей точкой двойной точности, как обозначает ключевое слово double, в оперативной памяти требуется 64 бита.Рациональнее всего пользоваться типом double, когда требуется сохранять точность многократно повторяющихся вычислений или манипулировать большими числами.
СИМВОЛЫ. Для хранения символов в Java используется тип данных char. Но тем, у кого имеется опыт программирования на С/С++, следует иметь в виду, что тип char в Java не равнозначен типу char в С или С++. Если в С/С++ тип char является целочисленным и имеет длину 8 бит, то в Java для представления символов типа char используется кодировка в Юникод (Для хранения этих символов требуется 16 бит, и поэтом в Java тип char является 16-разрядным. Диапазон допустимых значений этого типа составляет от 0 до 65 536. Отрицательных значений типа char не существует.
ТИПИЗАЦИЯ
Java – строго типизированный язык. Именно этим объясняется безопасность и надежность программ нa Java. Во-первых, каждая переменная и каждое выражение имеет конкретный тип, и каждый тип строго определен. Во-вторых, все операции присваивания, как явные, так и через параметры, передаваемые при вызове методов, проверяются на соответствие типов. В Java отсутствуют средства автоматического приведения или преобразования конфликтующих типов. Java проверяет все выражения и параметры на соответствие типов. Любые несоответствия типов считаются ошибками, которые должны быть исправлены до завершения компиляции класса.