
- •Свойства живой материи. Уровни организации живого, их характеристики.
- •Химическая организация клетки. Химические элементы: макро-, олиго-, микроэлементы. Неорганические молекулы.
- •Химическая организация клетки. Химические и физические свойства во-ды. Биологическое значение воды.
- •Структурная организация белковой молекулы. Классификация белков.
- •Аминокислоты, их строение и биологическое значение.
- •Биологическое значение денатурации и ренатурации белковой молекулы.
- •Ферменты: общая характеристика, свойства, представления о биологическом катализе.
- •Строение и свойства углеводов. Основные функции углеводов.
- •Строение и свойства липидов. Основные функции липидов.
- •Нуклеиновые кислоты. Общая характеристика. Роль нуклеотидов в энергетическом обмене.
- •Нуклеиновые кислоты: строение, структура, биологическая роль рнк.
- •Нуклеиновые кислоты: строение, структура, биологическая роль днк.
- •Реакции матричного синтеза: репликация, транскрипция, трансляция.
- •Обмен веществ и энергии. Процессы метаболизма: анаболизм и катаболизм.
- •Биологическое значение промежуточных продуктов обмена.
- •Взаимосвязь пластического и энергетического обмена веществ.
- •Клеточное дыхание, его сущность и значение.
- •Брожение: виды брожения, биологическое значение
- •Фотосинтез. Биологическая роль фотосинтеза.
- •Клетка – основная форма организации живой материи. Клеточная теория.
- •21. Типы клеточной организации: прокариотический и эукариотический.
- •Строение и функции основных органоидов эукариотической клетки многоклеточного организма.
- •Строение и жизнедеятельность животных и растительных клеток: сходство и различие.
- •Строение и функции цитоплазматической мембраны. Транспорт веществ через цитоплазматическую мембрану.
- •Размножение. Бесполое и половое размножение организмов.
- •Этапы, периоды и стадии онтогенеза.
- •Структурно-функциональная организация прокариотической клетки.
- •Структурно-функциональная организация эукариотической клетки.
- •Строение и функции клеточных органоидов общего назначения.
- •30. Этапы развития генетики. Наследственность и изменчивость – фундаментальные свойства живого.
- •31. Материальный носитель наследственности и изменчивости. Клеточный цикл.
- •32. Уровни организации генетического аппарата. Генный, хромосомный, геномный.
- •33.Основные механизмы поддержания постоянства кариотипа в ряду поколений организмов. Митоз, биологическое значение.
- •34. Гаметогенез у многоклеточных животных. Мейоз.
- •35. Молекулярная организация генов эукариотической клетки. Экзоны. Интроны. Процессинг эукариотических иРнк.
- •36. Уровни организации генетического материала: генный, хромосомный, геномный.
- •37. Основные закономерности наследования. Законы г. Менделя. Взаимодействие неаллельных генов.
- •38. Хромосомная теория наследственности. Наследование признаков сцепленных с полом.
- •39. Нарушение закона независимого наследования признаков. Сцепление и кроссинговер.
- •40. Роль генотипа и условий внешней среды в формировании фенотипа. Модификационная изменчивость.
- •41. Генотипическая изменчивость. Комбинативная изменчивость.
- •42. Мутационная теория. Мутации, их значение и классификация.
- •43. Генные, хромосомные и геномные мутации.
- •44. Значение медицинской генетики. Наследственные болезни.
- •45. Закон Харди-Вайнберга. Частоты аллелей. Частоты генотипов
- •46. Докажите, что изменения условий окружающей среды оказывают влияние на аллелофонд популяции и частоты генотипов.
38. Хромосомная теория наследственности. Наследование признаков сцепленных с полом.
На основании проведённых экспериментов Т. Морган сформулировал закон сцепленного наследования.
Гены, расположенные в одной хромосоме, наследуются вместе, образуя группу сцепления, и сила сцепления между ними обратно пропорциональна расстоянию между этими генами.
Этот закон был положен в основу хромосомной теории наследственности.
Каждый ген имеет в хромосоме определённый локус.
Гены в хромосоме расположены линейно в определённой последовательности.
Гены одной хромосомы сцеплены, поэтому наследуются преимущественно вместе.
Частота кроссинговера между генами равна расстоянию между ними.
Наследование, сцепленное с полом — наследование какого-либо гена, находящегося в половых хромосомах. Наследование признаков, проявляющихся только у особей одного пола, но не определяемых генами, находящимися в половых хромосомах, называется наследованием, ограниченным полом.
Наследованием, сцепленным с X-хромосомой, называют наследование генов в случае, когда мужской пол гетерогаметен и характеризуется наличием Y-хромосомы (XY), а особи женского пола гомогаметны и имеют две X-хромосомы (XX). Таким типом наследования обладают все млекопитающие, кроме однопроходных, большинство насекомых и пресмыкающихся.
Наследованием, сцепленным с Z-хромосомой, называют наследование генов в случае, когда женский пол гетерогаметен и характеризуется наличием W-хромосомы (ZW), а особи мужского пола гомогаметны и имеют две Z-хромосомы (ZZ). Таким типом наследования обладают все представители класса птиц.
Если аллель сцепленного с полом гена, находящегося в X-хромосоме или Z-хромосоме, является рецессивным, то признак, определяемый этим геном, проявляется у всех особей гетерогаметного пола, которые получили этот аллель вместе с половой хромосомой, и у гомозиготных по этому аллелю особей гомогаметного пола. Это объясняется тем, что вторая половая хромосома (Y или W) у гетерогаметного пола не несет аллелей большинства или всех генов, находящихся в парной хромосоме.
Таким признаком гораздо чаще будут обладать особи гетерогаметного пола. Поэтому заболеваниями, которые вызываются рецессивными аллелями сцепленных с полом генов, гораздо чаще болеют мужчины, а женщины часто являются носителями таких аллелей.
39. Нарушение закона независимого наследования признаков. Сцепление и кроссинговер.
При кроссинговере происходит нарушение закона Моргана, и гены одной хромосомы не наследуются сцепленно, так как часть из них заменяется на аллельные гены гомологичной хромосомы.
Согласно хромосомной гипотезе наследственности закон независимого наследования признаков Г. Менделя отражает независимость расхождения негомологичных хромосом в анафазе I мейоза. Однако в начале XX в. У. Сэттон обратил внимание на то, что число признаков, различия по которым обнаруживают моногибридное наследование, может значительно превосходить число хромосом гаплоидного набора у исследуемого объекта. Особенно показательно это для видов с небольшим числом хромосом. Например, у гороха п = 7, у ржи - также 7, у растения гаплопаппус п = 2, у дрозофилы - 4, у аскариды - 1 и т. д.
У. Сэттон полагал, что в таком случае каждая хромосома должна быть детерминантом не одного, а нескольких элементарных признаков. Если такое предположение справедливо, то должны встречаться случаи, когда разные менделевские факторы (или аллели разных генов) будут наследоваться совместно. При этом невозможна их перекомбинация в мейозе.
Действительно, пример нарушения закона независимого комбинирования признаков был вскоре обнаружен У. Бэтсоном и Р. Пеннетом (1900) в работе с душистым горошком (Lathyrus odoratus). Эти авторы изучали наследование следующих признаков: окраску цветка - пурпурная (Р) или красная (р), форму пыльцевых зерен - удлиненная (L) или круглая (/). При скрещивании растений с пурпурными цветками и удлиненной пыльцой (PPLL) и растений с красными цветками и круглой пыльцой (ppll) в F, были получены растения с пурпурными цветками и удлиненной пыльцой (PpLl).
Эти гибриды F1 в результате самоопыления дали следующее расщепление в F2:
- пурпурные цветки, удлиненная пыльца (Р_ ?_) - 4831 (69,5 %);
- пурпурные цветки, круглая пыльца (Р_1Г) - 390 (5,6 %);
- красные цветки, удлиненная пыльца (ppL_) - 393 (5,6 %);
- красные цветки, круглая пыльца (ppll) - 1338 (193 %)•
При расщеплении получены все четыре ожидаемых фенотипических класса, но не в соотношении 9 : 3 : 3 : 1, характерном для дигибридного скрещивания при независимом наследовании признаков.
В 1919 г. Дж. Холдэйн подсчитал, что такое расщепление может получиться, если четыре типа гамет у гибридов F будут образовываться не с одинаковой частотой, а в следующем соотношении: 0,44PL: 0,06/7: 0,06pL : 0,44pi.
Следовательно, родительские сочетания аллелей исследованных генов PL и pi предпочтительно попадают в одни и те же гаметы, в то время как их новые рекомбинантные сочетания (pL и PL) встречаются гораздо реже. Это явление в дальнейшем получило название сцепления генов. Однако вопреки предположению, высказанному У. Сэттоном, сцепление оказалось не полным, а частичным.
Сцепленное наследование — наследование признаков, гены которых локализованы в одной хромосоме. Сила сцепления между генами зависит от расстояния между ними: чем дальше гены располагаются друг от друга, тем выше частота кроссинговера и наоборот.
Кроссинговер (англ. crossing-over — перекрест хромосом) — процесс обмена гомологичных хромосом участками во время их конъюгации в профазе I мейоза. Кроссинговер является одним из механизмов генетической рекомбинации (обмена генами). Частота его зависит от расстояния между генами: чем дальше расположены гены друг от друга, тем чаще между ними идет перекрест. 1% кроссинговера принят за единицу расстояния между генами. Она названа морганидой в честь Т. Моргана, разработавшего принципы генетического картирования. Цитологическим признаком кроссинговера служат хиазмы — χ-образные фигуры бивалентов во время обмена участками. Кроссинговер обычно бывает мейотическим, но иногда происходит в митозе (соматический кроссинговер). Он может также осуществляться внутри гена.