
- •Свойства живой материи. Уровни организации живого, их характеристики.
- •Химическая организация клетки. Химические элементы: макро-, олиго-, микроэлементы. Неорганические молекулы.
- •Химическая организация клетки. Химические и физические свойства во-ды. Биологическое значение воды.
- •Структурная организация белковой молекулы. Классификация белков.
- •Аминокислоты, их строение и биологическое значение.
- •Биологическое значение денатурации и ренатурации белковой молекулы.
- •Ферменты: общая характеристика, свойства, представления о биологическом катализе.
- •Строение и свойства углеводов. Основные функции углеводов.
- •Строение и свойства липидов. Основные функции липидов.
- •Нуклеиновые кислоты. Общая характеристика. Роль нуклеотидов в энергетическом обмене.
- •Нуклеиновые кислоты: строение, структура, биологическая роль рнк.
- •Нуклеиновые кислоты: строение, структура, биологическая роль днк.
- •Реакции матричного синтеза: репликация, транскрипция, трансляция.
- •Обмен веществ и энергии. Процессы метаболизма: анаболизм и катаболизм.
- •Биологическое значение промежуточных продуктов обмена.
- •Взаимосвязь пластического и энергетического обмена веществ.
- •Клеточное дыхание, его сущность и значение.
- •Брожение: виды брожения, биологическое значение
- •Фотосинтез. Биологическая роль фотосинтеза.
- •Клетка – основная форма организации живой материи. Клеточная теория.
- •21. Типы клеточной организации: прокариотический и эукариотический.
- •Строение и функции основных органоидов эукариотической клетки многоклеточного организма.
- •Строение и жизнедеятельность животных и растительных клеток: сходство и различие.
- •Строение и функции цитоплазматической мембраны. Транспорт веществ через цитоплазматическую мембрану.
- •Размножение. Бесполое и половое размножение организмов.
- •Этапы, периоды и стадии онтогенеза.
- •Структурно-функциональная организация прокариотической клетки.
- •Структурно-функциональная организация эукариотической клетки.
- •Строение и функции клеточных органоидов общего назначения.
- •30. Этапы развития генетики. Наследственность и изменчивость – фундаментальные свойства живого.
- •31. Материальный носитель наследственности и изменчивости. Клеточный цикл.
- •32. Уровни организации генетического аппарата. Генный, хромосомный, геномный.
- •33.Основные механизмы поддержания постоянства кариотипа в ряду поколений организмов. Митоз, биологическое значение.
- •34. Гаметогенез у многоклеточных животных. Мейоз.
- •35. Молекулярная организация генов эукариотической клетки. Экзоны. Интроны. Процессинг эукариотических иРнк.
- •36. Уровни организации генетического материала: генный, хромосомный, геномный.
- •37. Основные закономерности наследования. Законы г. Менделя. Взаимодействие неаллельных генов.
- •38. Хромосомная теория наследственности. Наследование признаков сцепленных с полом.
- •39. Нарушение закона независимого наследования признаков. Сцепление и кроссинговер.
- •40. Роль генотипа и условий внешней среды в формировании фенотипа. Модификационная изменчивость.
- •41. Генотипическая изменчивость. Комбинативная изменчивость.
- •42. Мутационная теория. Мутации, их значение и классификация.
- •43. Генные, хромосомные и геномные мутации.
- •44. Значение медицинской генетики. Наследственные болезни.
- •45. Закон Харди-Вайнберга. Частоты аллелей. Частоты генотипов
- •46. Докажите, что изменения условий окружающей среды оказывают влияние на аллелофонд популяции и частоты генотипов.
Обмен веществ и энергии. Процессы метаболизма: анаболизм и катаболизм.
Метаболизм, или обмен веществ — это набор химических реакций, которые возникают в живом организме для поддержания жизни. Эти процессы позволяют организмам расти и размножаться, сохранять свои структуры и отвечать на воздействия окружающей среды.
Метаболизм обычно делят на 2 стадии: катаболизм и анаболизм. В ходе катаболизма сложные органические вещества деградируют до более простых, обычно выделяя энергию. А в процессах анаболизма — из более простых синтезируются более сложные вещества и это сопровождается затратами энергии.
Серии химических реакций обмена веществ называют метаболическими путями. В них, при участии ферментов, одни биологически значимые молекулы последовательно превращаются в другие.
Ферменты играют важную роль в метаболических процессах, потому что:
- действуют как биологические катализаторы и снижают энергию активации химической реакции;
- позволяют регулировать метаболические пути в ответ на изменения среды клетки или сигналы от других клеток.
Особенности метаболизма влияют на то, будет ли пригодна определённая молекула для использования организмом в качестве источника энергии. Так, например, некоторые прокариоты используют сероводород в качестве источника энергии, однако этот газ ядовит для животных. Скорость обмена веществ также влияет на количество пищи, необходимой для организма.
Катаболизмом называют метаболические процессы, при которых расщепляются относительно крупные органические молекулы сахаров, жиров, аминокислот. В ходе катаболизма образуются более простые органические молекулы, необходимые для реакций анаболизма (биосинтеза). Часто именно в ходе реакций катаболизма организм мобилизует энергию, переводя энергию химических связей органических молекул, полученных в процессе переваривания пищи, в доступные формы: в виде АТФ, восстановленных коферментов и трансмембранного электрохимического потенциала. Классификация организмов по типу метаболизма может быть основана на источнике получения энергии, что отражено в предыдущем разделе. Энергию химических связей используют хемотрофы, а фототрофы потребляют энергию солнечного света. Однако все эти различные формы обмена веществ зависят от окислительно-восстановительных реакций, которые связаны с передачей электронов от восстановленных доноров молекул, таких как органические молекулы, вода, аммиак, сероводород, на акцепторные молекулы, такие как кислород, нитраты или сульфат. У животных эти реакции сопряжены с расщеплением сложных органических молекул до более простых, таких как двуокись углерода и воду. В фотосинтезирующих организмах — растениях и цианобактериях — реакции переноса электрона не высвобождают энергию, но они используются как способ запасания энергии, поглощаемой из солнечного света.
Катаболизм у животных может быть разделён на три основных этапа. Во-первых, крупные органические молекулы, такие как белки, полисахариды и липиды, расщепляются до более мелких компонентов вне клеток. Далее эти небольшие молекулы попадают в клетки и превращается в ещё более мелкие молекулы, например ацетил-КоА. В свою очередь, ацетильная группа кофермента А окисляется до воды и углекислого газа в цикле Кребса и дыхательной цепи, высвобождая при этом энергию, которая запасается в форме АТР.
Анаболизм — совокупность метаболических процессов биосинтеза сложных молекул с затратой энергии. Сложные молекулы, входящие в состав клеточных структур, синтезируются последовательно из более простых предшественников. Анаболизм включает три основных этапа, каждый из которых катализируется специализированным ферментом. На первом этапе синтезируются молекулы-предшественники, например аминокислоты, моносахариды, терпеноиды и нуклеотиды. На втором этапе предшественники с затратой энергии АТФ преобразуются в активированные формы. На третьем этапе активированные мономеры объединяются в более сложные молекулы, например белки, полисахариды, липиды и нуклеиновые кислоты.
Не все живые организмы могут синтезировать все биологически активные молекулы. Автотрофы (например растения) могут синтезировать сложные органические молекулы из таких простых неорганических низкомолекулярных веществ, как углекислый газ и вода. Гетеротрофам необходим источник более сложных веществ, таких как моносахариды и аминокислоты, для создания более сложных молекул. Организмы классифицируют по их основным источникам энергии: фотоавтотрофы и фотогетеротрофы получают энергию из солнечного света, в то время как хемоавтотрофы и хемогетеротрофы получают энергию из неорганических реакций окисления.