Добавил:
ac3402546@gmail.com Направление обучения: транспортировка нефти, газа и нефтепродуктов группа ВН (Вечерняя форма обучения) Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

учебники / Короновский Н.В. «‎Общая геология‎» 3-ие издание

.pdf
Скачиваний:
983
Добавлен:
31.05.2021
Размер:
38 Mб
Скачать

Глава 2. Строение и состав Земли

101

Диориты — глубинные интрузивные породы, обладающие полнокристаллической структурой. Излившимися аналогами диоритов являются широко распространенные андезиты, обладающие обычно порфировой структурой.

Для всех кислых пород характерно наличие кварца. Кроме того,

взначительных количествах присутствуют полевые шпаты — калиевые и кислые плагиоклазы.

Граниты — глубинные интрузивные породы, обладающие полнокристаллической, обычно среднезернистой, реже крупно- и мелкозернистой структурой. Породообразующие минералы — кварц (25–35 %), калиевые полевые шпаты (35–40 %) и кислые плагиоклазы (20–25 %), из цветных минералов — биотит, в некоторых разностях частично замещающийся мусковитом. Излившимся аналогом гранитов являются риолиты, аналогами гранодиоритов — дациты.

Осадочные горные породы. На поверхности Земли в результате действия различных экзогенных, т. е. внешних, факторов образуются осадки, которые в дальнейшем уплотняются, претерпевают физико-хи- мические изменения — диагенез — и превращаются в осадочные горные породы, тонким чехлом покрывают около 75 % поверхности континентов. Многие из них являются полезными ископаемыми, другие — содержат таковые.

Среди осадочных пород выделяются три группы:

1)обломочные породы, возникающие в результате механического разрушения каких-либо пород и накопления образовавшихся обломков;

2)глинистые породы, являющиеся продуктом преимущественно химического разрушения пород и накопления возникших при этом глинистых минералов;

3)химические (хемогенные) и органогенные породы, образовавшиеся

врезультате химических и биологических процессов.

Обломочные породы по размерам обломков подразделяются на несколько типов.

Грубообломочные породы. В зависимости от формы и размеров обломков среди пород этого гранулометрического типа выделяются следующие: глыбы и валуны — соответственно угловатые и окатанные обломки размером свыше 200 мм в поперечнике; щебень и галька — при размерах обломков от 10 до 200 мм; дресва и гравий — при размерах обломков от 2 до 10 мм.

Грубообломочные породы, представляющие собой сцементированные неокатанные обломки, называются брекчиями и дресвяниками, сцементированные окатанные обломки — конгломератами и гравелитами.

К среднеобломочным породам относятся распространенные в земной коре пески и песчаники. Первые представляют собой скопление

102 Часть I. Происхождение Вселенной, Земли и Солнечной системы

несцементированных окатанных обломков песчаной размерности, вторые — таких же, но сцементированных.

Мелкообломочные породы. Рыхлые скопления мелких частиц размером от 0,005 до 0,05 мм называют алевритами. Одним из широко распространенных представителей алевритов является лесс — светлая палево-желтая порода, состоящая преимущественно из остроугольных обломков кварца и меньше — полевых шпатов с примесью глинистых частиц и извести.

Глинистые породы. Наиболее распространенными осадочными породами являются глинистые, на долю которых приходится больше 50 % объема всех осадочных пород. Глинистые породы в основном состоят из мельчайших (меньше 0,02 мм) кристаллических (реже аморфных) зерен глинистых минералов.

Химические и органогенные породы образуются преимущественно в водных бассейнах.

На долю карбонатных пород в осадочной оболочке Земли приходится около 14 %. Главный породообразующий минерал этих пород — кальцит, в меньшей степени — доломит. Соответственно наиболее распространенными среди карбонатных пород являются известняки — мономинеральные породы, состоящие из кальцита.

Кремнистые породы состоят главным образом из опала и халцедона. Так же, как карбонатные, они могут иметь биогенное, химическое и с- мешанное происхождение.

К биогенным породам относятся диатомиты и радиоляриты, состоящие из мельчайших, не различимых невооруженным глазом скелетных остатков диатомовых водорослей и радиолярий, скрепленных опаловым цементом.

Каустобиолиты образуются из растительных и животных остатков, преобразованных под влиянием различных геологических факторов. Эти породы обладают горючими свойствами, чем и обусловлено их важное практическое значение. К ним относятся породы ряда углей (торф, ископаемые угли), горючие сланцы.

Метаморфические горные породы — результат преобразования пород разного генезиса, приводящего к изменению первичной структуры, текстуры и минерального состава в соответствии с новой физикохимической обстановкой. Главными факторами (агентами) метаморфизма являются эндогенное тепло, всестороннее (литостатическое) давление, химическое воздействие флюидов. Постепенность нарастания интенсивности факторов метаморфизма позволяет наблюдать все переходы от первично осадочных или магматических пород к образующимся по ним метаморфическим породам. Метаморфические породы обладают полнокристаллической структурой. Размеры кристаллических

Глава 2. Строение и состав Земли

103

зерен, как правило, увеличиваются по мере роста температур метаморфизма (рис. 2.26).

Рис. 2.26. Круговорот горных пород

Земная кора является основным объектом изучения геологии. Поэтому мы приведем средние химические составы континентальной и океанической коры, а также земной коры в целом согласно расчетам А. А. Ярошевского.

2.8.СТРОЕНИЕ ЗЕМНОЙ КОРЫ

Впредыдущем разделе было установлено общее внутреннее строение земного шара, поверхность которого покрывает тоненькая, но чрезвычайно важная «пленка», называемая земной корой, имеющая в среднем мощность около 40 км и составляющая всего лишь 1/160 от радиуса Земли. Земная кора вместе с частью верхней мантии до астеносферного слоя называется литосферой, а литосфера вместе с астеносферой образует тектоносферу, верхнюю оболочку земного шара, во многом ответственную за процессы, происходящие в земной коре. Строение земной коры, мощность которой изменяется практически от 0 до 70–75 км и повсеместно имеет четкую нижнюю границу — поверхность Мохоровичича, или «М», принципиально отличается на континентах и в океанах (рис. 2.27).

104 Часть I. Происхождение Вселенной, Земли и Солнечной системы

Рис. 2.27. Схемы строения земной коры. I — континентальная кора, слои: 1 — осадочный, 2 — гранитно-метаморфический, 3 — гранулито-базитовый,

4 — перидотиты верхней мантии. II — океаническая кора, слои: 1 — осадочный, 2 — базальтовых подушечных лав, 3 — комплекса параллельных даек, 4 — габбро, 5 — перидотиты верхней мантии. М — граница Мохоровичича

Сведения о коре мы получаем, непосредственно наблюдая породы на поверхности Земли, особенно на щитах древних платформ, из керна глубоких и сверхглубоких скважин как на суше, так и в океанах; ксенолитов в вулканических породах; драгированием океанского дна и из сейсмических исследований, дающих наиболее важную информацию о глубоких горизонтах земной коры (табл. 7).

Океаническая кора обладает 3-слойным строением (сверху вниз) (рис. 2.28).

1-й слой представлен осадочными породами, в глубоководных котловинах он не превышает в мощности 1 км и составляет до 15 км вблизи континентов. Породы представлены карбонатными, глинистыми и кремнистыми породами. Важно подчеркнуть, что нигде в океанах возраст осадков не превышает 170–180 млн лет.

2-й слой сложен в основном базальтовыми пиллоу (подушечными) лавами с тонкими прослоями осадочных пород. В нижней части этого слоя располагается своеобразный комплекс параллельных даек базальтового состава, служивших подводящими каналами для подушечных лав.

3-й слой представлен кристаллическими магматическими породами, главным образом основного состава — габбро и реже ультраосновного, располагается в нижней части слоя, глубже которого находятся поверхность М и верхняя мантия.

 

Глава 2. Строение и состав Земли

105

 

 

 

Таблица 7

 

Химический состав земной коры в %

 

 

 

 

 

 

 

Тип коры

Континентальная

Океаническая

В целом

 

 

 

 

 

 

Масса 1024 г

22,32

6,14

28,46

 

SiO2

54,55

49,89

53,54

 

TiO2

0,855

1,381

0,97

 

Al2O3

16,17

14,81

15,87

 

Fe2O3

0,92

1,79

1,11

 

FeO

7,32

8

7,6

 

 

 

 

 

 

MnO

0,159

0,181

0,164

 

 

 

 

 

 

MgO

4,91

7,38

5,44

 

 

 

 

 

 

CaO

8,72

11,93

9,41

 

 

 

 

 

 

Na2O

2,74

2,38

2,66

 

K2O

1,32

0,23

1,09

 

P2O5

0,201

0,143

0,189

 

Cорг.

0,07

 

0,06

 

CO2

1,14

0,42

0,99

 

SO3

0,063

0,01

0,052

 

S2-

0,049

0,001

0,039

 

Cl

0,068

0,004

0,055

 

 

 

 

 

 

F

0,025

0,002

0,02

 

 

 

 

 

 

H2O

0,77

0,85

0,78

 

Сумма

100,056

100,002

100,039

 

 

 

 

 

 

Отметим, что кора океанического типа не только развита в океанах и глубоководных впадинах внутренних морей, но встречается и в складчатых поясах на суше в виде фрагментов пород офиолитовой ассоциации, парагенезис (сонохождение) которых (кремнистые породы — базальтовые лавы — основные и ультраосновные породы) был впервые выделен в 20-х гг. ХХ в. Г. Штейнманом в Лигурийских Альпах на севе- ро-западе Италии.

Континентальная земная кора также имеет 3-членное строение, но структура ее иная (сверху вниз).

1-й, осадочно-вулканогенный, слой обладает мощностью от 0 на щитах платформ до 25 км в глубоких впадинах, например в Прикаспийской.

106 Часть I. Происхождение Вселенной, Земли и Солнечной системы

Рис. 2.28. Строение океанической земной коры

Возраст осадочного слоя колеблется от раннего протерозоя до четвертичного.

2-й слой образован различными метаморфическими породами: кристаллическими сланцами и гнейсами, а также гранитными интрузиями. Мощность слоя изменятся от 15 до 30 км в различных структурах.

3-й слой, образующий нижнюю кору, сложен сильно метаморфизованными породами, в составе которых преобладают основные породы. Поэтому он называется гранулито-базитовым. Частично он был вскрыт Кольской сверхглубокой скважиной. Нижняя кора обладает изменчивой мощностью 10–30 км. Граница раздела между 2-м и 3-м слоями континентальной коры нечеткая, в связи с чем иногда в консолидированной части коры (ниже осадочного слоя) выделяют три, а не два слоя.

Поверхность М выражена повсеместно и достаточно четко скачком скоростей сейсмических волн от 7,5–7,7 до 7,9–8,2 км/с. Верхняя мантия в составе нижней части литосферы сложена ультраосновными породами, в основном перидотитами, как, впрочем, и астеносфера, характеризующаяся пониженной скоростью сейсмических волн, что интерпретируется как пониженная вязкость и, возможно, плавление до 2–3 %.

Глава 3

ВОЗРАСТ ГОРНЫХ ПОРОД И ТЕКТОНИКА ЛИТОСФЕРНЫХ ПЛИТ

3.1. ОТНОСИТЕЛЬНАЯ ГЕОХРОНОЛОГИЯ

Одной из главных задач геологии является воссоздание истории развития Земли и ее отдельных регионов. Сделать это возможно, только если известна последовательность геологических событий, если мы знаем относительный возраст осадочных отложений, слои которых перекрывают друг друга, если мы определили последовательность внедрения интрузивных тел и их соотношение с вмещающими горными породами.

Геология прошла долгий путь, прежде чем соотношения между горными породами стали очевидными и всем понятными принципами, на которых основываются все наблюдения.

Во-первых, было установлено, что каждый слой отделяется от соседнего ясно выраженной поверхностью. В современных палеогеографических обстановках, в океанах, морях, озерах слои накапливаются горизонтально и параллельно. Этот принцип первичной горизонтальности оказался важным для следующего вывода.

В1669 г. Н. Стено выдвинул принцип суперпозиции, заключавшийся

впризнании того факта, что каждый вышележащий в разрезе слой моложе нижележащего. У каждого слоя есть кровля и подошва независимо от того, как эти слои залегают в настоящее время. Они могут быть смяты в складки тектоническими движениями, они могут быть даже перевернуты. Все равно кровля слоя остается кровлей, а подошва — подошвой. Принцип суперпозиции Н. Стено позволил описывать тол-

щи пород, состоящие из множества слоев, и устанавливать изменения в них, происходящие во времени.

Если в каком-нибудь слое находится обломок, валун, глыба какойто другой породы, то она древнее, чем этот слой. Точно так же и в интрузивных образованиях и лавовых потоках любое включение — ксенолит — является более древним. Это положение можно назвать принципом включений.

Знаменитый английский геолог Д. Хаттон установил принцип пересечения, заключающийся в том, что любое тело как изверженных,

108 Часть I. Происхождение Вселенной, Земли и Солнечной системы

так и осадочных пород, пересекающее толщу слоев, моложе этих слоев.

Перечисленные выше принципы анализа взаимоотношений слоистых толщ и изверженных пород дают возможность правильно выявить относительную последовательность геологических событий. Из них становится очевидным, что какие-либо метаморфические события, т. е. нагревание, воздействие давлением, флюидами, всегда моложе тех толщ, в которых они проявляются. Точно так же и складчатость моложе, чем слои, на которые она воздействует.

Рассмотрим эти принципы на примере (рис. 3.1). Самыми древними слоями являются слои толщи 4. После их накопления и смятия в складки внедрилась дайка 7, в которой есть ксенолиты пород толщи 4. Затем накопились слои толщи 3, впоследствии смятые в относительно пологие складки. Затем они были прорваны гранитной интрузией 6. Далее образовались слои 2, которые слегка деформировались и в них внедрилась дайка 5. Все отложения перекрыты слоем 1.

Таким образом, изложенные выше принципы на первом этапе помогают восстанавливать геологическую историю района.

Рис. 3.1. Соотношение разновозрастных отложений и пересекающих их интрузивных тел. Цифры 1, 2, 3, 4 показывают последовательность

формирования осадочных пород, толщи которых разделены угловыми несогласиями. Дайка 5 — самая молодая и внедрилась до образования толщи 1.

Гранитная интрузия внедрилась до формирования толщи 2, после формирования толщ 3 и 4. Дайка 7 — самая древняя и прорывает только толщу 4

Глава 3. Возраст горных пород и тектоника литосферных плит

109

Сопоставление (корреляция) разрезов. На втором этапе возникает необходимость выделения одновозрастных слоев в разных геологических обнажениях. Каким образом можно доказать, что в удаленных друг от друга разрезах мы видели одни и те же слои?

Один из методов — это прослеживание слоя на местности от одного обнажения до другого. Если местность хорошо обнажена, то этот прием не составляет трудности, особенно если слой или пачка слоев отличается от других, например, цветом, характером слоистости, гранулометрией и др.

Другой способ корреляции заключается в предположении, что породы одного и того же типа формировались в одно и то же время. Иными словами, если в одном обнажении мы наблюдаем белые кварцевые песчаники с косой слоистостью, образовавшиеся за счет формирования дюн в прибрежной зоне, то, выявив точно такие же песчаники в другом, достаточно удаленном обнажении, мы можем предположить, что эти песчаники имеют один и тот же возраст. Подобная корреляция наиболее успешна, когда имеются хорошо отличающиеся друг от друга слои или толщи слоев (рис. 3.2).

Еще один способ сопоставления удаленных друг от друга разрезов заключается в сравнении распространенной в них фауны. Существуют формы ископаемых организмов, которые имеют широкое площадное распространение и очень узкий вертикальный интервал существования, т. е. они жили краткое время. Такие формы организмов называют руководящими. Присутствие подобных окаменелостей в слоях разных обнажений, даже несмотря на то, что слои могут различаться и по составу, и по мощности, однозначно свидетельствует об одновозрастности этих

Рис. 3.2. Корреляция отложений по составу

110 Часть I. Происхождение Вселенной, Земли и Солнечной системы

слоев. Сопоставление фауны и литологического состава отложений позволяет выявлять в разрезах отсутствие некоторых слоев, т. е. установить перерыв в осадконакоплении (рис. 3.3).

Рис. 3.3. Сопоставление разрезов палеонтологическим методом. Слой 3 отсутствует

вразрезах Б и В. Остальные слои прослеживаются во всех разрезах

Внастоящее время для корреляции осадочных морских отложений широко используется микрофауна — фораминиферы, имеющие известковый скелет, и радиолярии с кремневым скелетом. Для сопоставления континентальных и реже морских отложений используются споры и пыльца растений. Таким образом, корреляция осадочных толщ, основанная на палеонтологических остатках, является одним из важнейших методов сопоставления геологических разрезов, удаленных друг от друга.

Впоследние 25 лет для корреляции осадочных толщ, не выходящих на поверхность Земли или расположенных ниже дна океана или моря, используется специальный геофизический метод, основанный на отражении сейсмических волн от слоев разной плотности. Этот метод, названный сейсмостратиграфическим (рис. 3.4.), позволяет получать как бы геологический профиль на расстоянии десятков километров и по специфическому рисунку отражений сейсмических волн от кровли и подошвы различных слоев прослеживать их и коррелировать между собой. Сейсмостратиграфия особенно широко используется при поиске нефти и газа, т. к. позволяет сразу же выделять места, благоприятные для скопления углеводородов.

Внастоящее время так же широко используется палеомагнитный метод корреляции отложений (рис. 3.5). Все горные породы, как магматические, так и осадочные, в момент своего образования приобретают намагниченность, отвечающую по направлению и по силе магнитному полю

данного времени. Эта намагниченность сохраняется в породе, поэтому и называется остаточной намагниченностью, разрушить которую может лишь нагревание до высоких температур, выше точки Кюри, ниже которой магматические породы приобретают намагниченность, либо, скажем,

Соседние файлы в папке учебники