
- •Набор заданий для проверки достижения конкретных целей обучения
- •29.2. Механизмы фотолюминесценции
- •29.3. Спектры возбуждения и люминесценции. Правило Стокса
- •29.4. Хемилюминесценция
- •29.5. Использование люминесценции в биологии и медицине
- •31.1. Прохождение монохроматического света через прозрачную среду
- •31.2. Создание инверсной населенности. Способы накачки
- •31.3. Принцип действия лазера. Типы лазеров
- •31.4. Особенности лазерного излучения
- •31.5. Характеристики лазерного излучения, применяемого в медицине
- •31.6. Изменения свойств ткани и ее температуры под действием непрерывного мощного лазерного излучения
- •31.7. Использование лазерного излучения в медицине
- •V2: Тепловое излучение. Фотоэффект
- •V3: Тепловое излучение
- •-: Уменьшилась в 81 раз -: уменьшилась в 12 раз -: увеличилась в 12 раз
- •V3: Фотоэффект
- •S: Определить работу выхода электронов из натрия, если красная граница фотоэффекта равна 500 нм.
- •-: Будет, так как энергия фотона больше работы выхода
- •S: Какая доля энергии фотона израсходована на работу вырывания фотоэлектрона, если красная граница фотоэффекта 307 нм и максимальная кинетическая энергия фотоэлектрона равна 1 эВ? -:
- •V2: Эффект Комптона. Световое давление
- •V3: Эффект Комптона
- •S: Определить импульс электрона отдачи при эффекте Комптона, если фотон с энергией, равной энергии покоя электрона, был рассеян на угол 180°.
- •S: Какая доля энергии фотона при эффекте Комптона приходится на электрон отдачи, если фотон претерпел рассеяние на угол 180°? Энергия фотона до рассеяния была равна 0,255 МэВ.
- •S: Угол рассеяния фотона равен 90°. Угол отдачи электрона равен 30°. Определить энергию падающего фотона.
- •S: Фотон ( 1 пм) рассеялся на свободном электроне под углом 90° Какую долю своей энергии фотон передал электрону?
- •V3: Световое давление
- •S: Определить длину волны фотона, импульс которого равен импульсу электрона, обладающего скоростью 10 Мм/с.
- •S: Определить длину волны фотона, масса которого равна массе покоя электрона.
- •S: Определить длину волны фотона, масса которого равна массе покоя протона.
- •S: Монохроматическое излучение с длиной волны 500 нм падает нормально на плоскую зеркальную поверхность и давит на нее с силой 10 нН. Определить число фотонов, ежесекундно падающих на эту поверхность.
- •V1: Раздел 6. Квантовая физика, физика атома
- •V2: Спектр атома водорода. Правило отбора
- •V2: Дуализм свойств микрочастиц. Соотношение неопределенностей Гейзенберга
- •V2: Уравнение Шредингера
- •V2: Применения уравнения Шредингера
- •V1: Раздел 7. Элементы ядерной физики и физики элементарных частиц
- •V2: Атомное ядро. Элементарные частицы
- •V2: Ядерные реакции
- •V2: Законы сохранения в ядерных реакциях
- •V2: Фундаментальные взаимодействия
31.2. Создание инверсной населенности. Способы накачки
Так можно ли добиться инверсной населенности? Оказывается, можно, если использовать три энергетических уровня со следующей конфигурацией (рис. 31.3).
Пусть среда освещается мощной вспышкой света. Часть спектра излучения будет поглощена в переходе с основного уровня Е1 на широкий уровень Е3. Напомним, что широким является энергетический уровень с малым временем релаксации. Поэтому большинство частиц, попавших на уровень возбуждения Е3, безызлучательно переходит на узкий метастабильный уровень Е2, где происходит их накопление. Вследствие узости этого уровня лишь малая доля фотонов вспышки
Рис.
31.3. Создание
инверсной населенности на метастабильном
уровне
способна вызвать вынужденный переход Е2 → Е1. Этим и обеспечиваются условия для создания инверсной населенности.
Процесс создания инверсной населенности называется накачкой. В современных лазерах применяются различные виды накачки.
• Оптическая накачка прозрачных активных сред использует импульсы света от внешнего источника.
|
• Электроразрядная накачка газовых активных сред использует электрический разряд.
• Инжекционная накачка полупроводниковых активных сред использует электрический ток.
• Химическая накачка активной среды из смеси газов использует энергию химической реакции между компонентами смеси.
31.3. Принцип действия лазера. Типы лазеров
Функциональная схема лазера показана на рис. 31.4. Рабочее тело (активная среда) представляет собой длинный узкий цилиндр, торцы которого закрыты двумя зеркалами. Одно из зеркал (1) полупрозрачно. Такая система называется оптическим резонатором.
Система накачки переводит частицы с основного уровня Е1 на поглощательный уровень Е3, откуда они безызлучательно переходят на метастабильный уровень Е2, создавая его инверсную населенность. После этого начинаются спонтанные излучательные переходы Е2 → Е1 с испусканием монохроматических фотонов:
Рис.
31.4. Схематическое
устройство лазера
Фотоны спонтанного излучения, испущенные под углом к оси резонатора, выходят через боковую поверхность и в процессе генерации не участвуют. Их поток быстро иссякает.
Фотоны, которые после спонтанного излучения движутся вдоль оси резонатора, многократно проходят через рабочее тело, отражаясь от зеркал. При этом они взаимодействуют с возбужденными частицами, инициируя вынужденное излучение. За счет этого происходит «лавинообразное» нарастание индуцированных фотонов, движущихся в том же направлении. Многократно усиленный поток фотонов выходит через полупрозрачное зеркало, создавая мощный пучок почти параллельных когерентных лучей. Фактически лазерное излучение порождается первым спонтанным фотоном, который движется вдоль оси резонатора. Это и обеспечивает когерентность излучения.
|
Таким образом, лазер преобразует энергию источника накачки в энергию монохроматического когерентного света. Эффективность такого преобразования, т.е. КПД, зависит от типа лазера и лежит в диапазоне от долей процента до нескольких десятков процентов. У большинства лазеров КПД составляет 0,1-1 %.
Типы лазеров
Первый созданный лазер (1960 г.) использовал в качестве рабочего тела рубин и оптическую систему накачки. Рубин - это кристаллическая окись алюминия А12О3, содержащая около 0,05 % атомов хрома (именно хром придает рубину розовый цвет). Атомы хрома, внедренные в кристаллическую решетку, являются активной средой
с конфигурацией энергетических уровней, изображенной на рис. 31.3. Длина волны излучения рубинового лазера равна λ = 694,3 нм. Затем появились лазеры, использующие другие активные среды.
В зависимости от типа рабочего тела лазеры делятся на газовые, твердотельные, жидкостные, полупроводниковые. В твердотельных лазерах активный элемент обычно изготавливается в виде цилиндра, длина которого много больше его диаметра. Газовые и жидкие активные среды помещают в цилиндрическую кювету.
В зависимости от способа накачки можно получить непрерывную и импульсную генерацию лазерного излучения. При непрерывной системе накачки инверсия населенности поддерживается длительное время за счет внешнего источника энергии. Например, непрерывное возбуждение электрическим разрядом в газовой среде. При импульсной системе накачки инверсия населенности создается в импульсном режиме. Частота следования импульсов от 10-3
Гц до 103 Гц.