Добавил:
посчитаю шум по экологии, мат баланс по гидролизу Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

bio_6денисенко

.docx
Скачиваний:
7
Добавлен:
31.03.2021
Размер:
39.81 Кб
Скачать

Вариант № 6

Вопрос № 1

Технология рекомбинантных генов, выделение генов, подлежащих клонированию, присоединение гена к вектору, экспрессия гена, наиболее распространенные векторы, клонирование рекомбинантных ДНК в клетке.

Генетическая инженерия - система экспериментальных приемов, позволяющих конструировать лабораторным путем (в пробирке) искусственные генетические структуры в виде так называемых рекомбинантных или гибридных молекул ДНК.

Рекомбинантные ДНК – молекулы ДНК, полученные вне живой клетки путем соединения природных или синтетических фрагментов ДНК с молекулами, способными реплицироваться в клетке.

Технология рекомбинантных ДНК использует следующие методы:

 специфическое расщепление ДНК рестрицирующими нуклеазами, ускоряющее выделение и манипуляции с отдельными генами;

 быстрое секвенирование всех нуклеотидов очищенном фрагменте ДНК, что позволяет определить границы гена и аминокислотную последовательность, кодируемую им;

 конструирование рекомбинантной ДНК;

 гибридизация нуклеиновых кислот, позволяющая выявлять специфические последовательности РНК или ДНК с большей точностью и чувствительностью, основанную на их способности связывать комплементарные последовательности нуклеиновых кислот;

 клонирование ДНК: амплификация in vitro с помощью цепной полимеразной реакции или введение фрагмента ДНК в бактериальную клетку, которая после такой трансформации воспроизводит этот фрагмент в миллионах копий;

 введение рекомбинантной ДНК в клетки или организмы.

Выделение генов

Ген может быть выделен из естественных источников (из подходящего генома) или геномной библиотеки. Он может быть синтезирован искусственно: химическим путем (по имеющейся последовательности нуклеотидов) или ферментативным путем с использованием механизма обратной транскрипции (синтез кДНК на матрице мРНК с помощью обратной транскриптазы), получен с помощью полимеразной цепной реакции (ПЦР).

а) Выделение генов из ДНК: изолированную ДНК подвергают фрагментации. Для этого используют ферменты - рестрикционные эндонуклеазы (рестриктазы), катализирующие расщепление ДНК на участках, имеющих определенные последовательности нуклеотидов (обычно длиной в 4-7 нуклеотидных пар). Расщепление может происходить по середине узнаваемого участка нуклеотидных пар, и тогда обе нити ДНК «разрезаются» на одном уровне. Образующиеся фрагменты имеют двунитевые (тупые) концы. Другие рестриктазы расщепляют нити ДНК со сдвигом, образуется ступенька – одна из нитей ДНК выступает на несколько нуклеотидов. Образуются однонитевые (липкие) концы. Если встречаются два липких фрагмента ДНК, полученных действием одной и той же рестриктазы, то они легко вступают во взаимодействие (по принципу комплементарности):

При необходимости тупые концы могут быть превращены в липкие. Нуклеотидная последовательность с липкими концами может быть присоединена к вектору, предварительно обработанному той же рестриктазой или превращена из линейной молекулы в кольцевую путем сшивания взаимно комплементарных концов.

недостатки:

1) Достаточно трудно подобрать рестриктазы, позволяющие вырезать из ДНК именно тот участок, который соответствует нужному гену. Наряду с интересующим геном фрагменты ДНК, как правило, включают лишние нуклеотидные последовательности, мешающие использованию гена. Рестриктаза может отщепить часть нуклеотидной последовательности гена, в результате ген теряет функциональную полноценность.

2) Гены эукариот имеют сложное строение: включают экзоны и интроны. Первичная РНК, синтезированная на такой ДНК-матрице, подвергается модификации (сплайсингу), в результате участки, соответствующие интронам, удаляются, а участки, соответствующие экзонам, соединяясь, образуют зрелую матричную РНК. Наличие интронов является препятствием для нормального функционирования трансплантированных генов.

3) При обработке ДНК рестриктазами образуется смесь фрагментов. Выделить из нее фрагменты, несущие нужный ген – сложная задача. Бактериальная клетка содержит около 5 тыс. генов, а эукариотная клетка – от 10 до 200 тыс. генов.

б) Химико-ферментативный синтез генов. Данный метод является альтернативой «вырезанию» генов с помощью рестриктаз из нативной ДНК. Метод включает химический синтез коротких (8-16-звенных) одноцепочечных фрагментов ДНК (олигонуклеотидов) за счет поэтапного образования эфирных связей между нуклеотидами и сшивку олигонуклеотидов между собой посредством ДНК-лигазы с образованием двухцепочечных полинуклеотидов.

Химико-ферментативный синтез позволяет точно воссоздать минимально необходимую последовательность нуклеотидов. Кроме того, существует возможность введения в гены участков узнавания различных рестриктаз, регуляторных последовательностей.

Применимость данного метода ограничена возможностями получения информации о нуклеотидной последовательности гена. Эта последовательность может быть воссоздана на основе первичной структуры соответствующего белка.

Методом химико-ферментативного синтеза получены гены соматостатина, А- и В-цепей инсулина, проинсулина и др.

в) Ферментативный синтез генов на основе выделенной из клетки м-РНК. Это наиболее широко распространенный метод синтеза генов. Обратная транскриптаза (ревертаза) катализирует синтез нити ДНК, комплементарной мРНК. Полученную одноцепочечную ДНК (комплементарная ДНК, кДНК) используют в качестве матрицы для синтеза второй нити ДНК с применением ДНК-полимеразы или ревертазы.

Достоинством данного метода является то, что ген получается без интронов и других нетранскрибируемых последовательностей. Кроме того, легче создать условия, когда клетка аккумулирует нужный вид мРНК, чем отбирать ген из смеси фрагментов ДНК.

С помощью этого метода в 1979 г. был получен ген соматотропина (гормона роста человека).

Требования к векторной ДНК, ее состав

Вектор - молекула ДНК или РНК, состоящая из двух компонентов: векторной части (носителя) и клонируемого чужеродного гена. Задача вектора – донести выбранную ДНК в клетку-рецепиент, встроить ее в геном, позволить идентификацию трансформированных клеток, обеспечить стабильную экспрессию введенного гена. Таким образом, вектор должен быть небольшим, способным поддерживаться в клетке-хозяине (реплицироваться), многократно копироваться (ампфлицироваться), экспрессировать соответствующий ген (содержать соответствующие регуляторные последовательности), должен иметь маркерный ген, позволяющий различать гибридные клетки для эффективной селекции их; должен быть способен передаваться в клетку соответствующего организма. Регуляторные последовательности, отвечающие за стабильную экспрессию гена, будут рассмотрены позднее.

Типы векторов для введения гена в клетку:

1 бактериальные плазмиды

2 вирусы

3 вироиды

4 плазмиды агробактерий

5 хлоропластная и митохондриальная ДНК

6 транспозоны

Способы прямого введения генов в клетку:

Прямое введение гена в клетку осуществляют несколькими способами:

Трансфекция

Микроинъекция

Электропорация

Метод «мини-клеток»

Упаковка в липосомы

Электронная пушка

При трансфекции ДНК адсорбируется на кристаллах фосфата кальция (Грэхем Ван дер Эб, 1973). Образуются частицы кальциевого преципитата. Они поглощаются клеткой путем фагоцитоза. Для повышения эффективности трансформации к специфической ДНК, содержащей ген, по которому будет производиться селекция, добавляется неспецифическая ДНК-носитель. Обычно для этой цели берут ДНК из тимуса теленка или спермы лосося. Часть ДНК связывается с мембраной и не попадает в клетки. ДНК акцептируют от 15 до 90% клеток. Через несколько суток после введения небольшая доля клеток способны экспрессировать чужеродные гены, но затем уровень экспрессии падает и более или менее стабильную трансформацию претерпевает 10-3 - 10-5 клеток. Для трансфекции используется и ДЭАЭ-декстран, полимер, адсорбирующий ДНК. Эффект вхождения в клетки и время экспрессии высоки, но частота стабильной трансформации ниже, чем при использовании преципитата кальция. Частоту трансфекции увеличивает глицериновый шок (4 минуты в 15% растворе глицерина в НEPES-буфере). В клетки можно вводить любой ген, если заранее лигировать его с клонированным селективным маркером. Однако дальнейшие исследования показали, что лигирование вне клетки не обязательно. Клетки, поглощающие селективный ген, вместе с ним поглощают и другую ДНК, имеющуюся в кальциевом преципитате. Таким образом, пользуясь методом котрансформации, практически любой клонированный сегмент ДНК можно ввести в культивируемые клетки эукариот, если включить эту ДНК вместе с селективным маркером в состав смеси для образования кальциевого преципитата. Для трансфекции можно использовать хромосомы или фрагменты хромосом. Клетки-доноры блокируются на стадии митоза. Митотические хромосомы высвобождаются под воздействием осмотического шока и гомогенизации. Их очищают путем дифференциального центрифугирования. Хромосомы осаждают на поверхности клеток хлористым кальцием, а через несколько часов обрабатывают реагентом, способным перфорировать мембраны (например, глицерином). Для обработки клеток-рецепиентов используются грубо очищенные препараты хромосом, так как хромосомы при этом разрушаются меньше всего. Количество хромосом для обработки 1 клетки ограничено. Лучше использовать не более 20 хромосом на 1 клетку-рецепиент, так как при высоких концентрациях хромосом в суспензии они агглютинируют. Рецепиентная клетка содержит фрагменты донорных хромосом, которые могут встраиваться в геном, могут реплицироваться самостоятельно. Во введенных фрагментах часто наблюдаются делеции. Не все клетки способны к трансформации геномной ДНК с высокой частотой. Человеческие фибробласты эффективно включают плазмидную ДНК и почти не включают геномную.

Микроинъекция ДНК в клетки млекопитающих стала возможной с появлением прибора для изготовления микропипеток диаметром 0.1-0.5 микрона и микроманипулятора. Так, плазмиды, содержащие фрагмент вируса герпеса с геном тимидинкиназы (ТК) и плазмиду рВR322, были инъецированы в ТК- -клетки и было показано, что ТКген проник в ядра и нормально в них реплицировался. Метод введения ДНК с помощью микроинъекций был разработан в начале 70-х годов Андерсоном и Диакумакосом. В принципе, при наличии хорошего оборудования можно за 1 час инъецировать 500-1000 клеток, причем в лучших экспериментах в 50% клеток наблюдается стабильная интеграция и экспрессия инъецированных генов. Преимущество описываемого метода заключается также в том, что он позволяет вводить любую ДНК в любые клетки, и для сохранения в клетках введенного гена не требуется никакого селективного давления.

Электропорация основана на том, что импульсы высокого напряжения обратимо увеличивают проницаемость биомембран. В среду для электропорации добавляют клетки и фрагменты ДНК, которые необходимо ввести в клетки . Через среду пропускают высоковольтные импульсы (напряжение 200 - 350 В, длительность импульса 54 мс), приводящие к образованию пор (электропробой) в цитоплазматической мембране, время существования и размер которых достаточны, чтобы такие макромолекулы, как ДНК, могли из внешней среды войти в клетку в результате действия осмотических сил. При этом объем клетки увеличивается. Напряженность электрического поля и продолжительность его действия, концентрации трансформирующей ДНК и реципиентных клеток для каждой системы клеток подбирают экспериментально, с тем чтобы достичь высокого процента поглощения ДНК выжившими клетками. Показано, что в оптимальных условиях электропорации количество трансформантов может достигать 80% выживших клеток. Электропорация — физический, а не биохимический метод, и это, по-видимому, обусловливает его широкое применение. Многочисленные исследования продемонстрировали, что электропорация может успешно использоваться для введения молекул ДНК в разные типы клеток, такие как культивируемые клетки животных, простейшие, дрожжи, бактерии и протопласты растений. Электропорирующий эффект высоковольтного разряда на бислойную липидную мембрану, повидимому, зависит от радиуса ее кривизны. Поэтому мелкие бактериальные клетки эффективно поглощают ДНК при значительно большей напряженности (10 кВ/см и более), чем крупные животные и растительные клетки, эффективно поглощающие ДНК при напряженности поля 1—2 кВ/см. Электропорация — наиболее простой, эффективный и воспроизводимый метод введения молекул ДНК в клетки. Однако до недавнего времени этот метод использовался в ограниченном числе лабораторий в связи с отсутствием серийных приборов — электропораторов. Появление и совершенствование таких приборов в ближайшие годы приведет к широкому применению данного подхода в генетической инженерии самых разных типов клеток.

«Мини-клетки» получают путем блокирования донорных клеток митозе колцемидом. При продолжительной обработке клеток колцемидом в них вокруг каждой хромосомы формируется новая ядерная мембрана. Обработка цитохалазином В и центрифугирование приводит к образованию мини-клеток, представляющих микроядра, инкапсулированные в цитоплазматическую мембрану. Полученные мини-клетки очень чувствительны к разного рода воздействиям, поэтому для слияния подбирают специальные мягкие условия. Метод трудный, капризный, эффективность низкая – 10-6 – 10-7 .

Упаковка в липосомы используется для защиты экзогенного генетического материала от разрушающего действия рестриктаз. Липосомы - сферические оболочки, состоящие из фосфолипидов. Получают их путем резкого встряхивания смеси водного раствора и липидов, либо обрабатывая ультразвуком водные эмульсии фосфолипидов. Липосомы, состоящие из фосфатидилсерина и холестерина наиболее пригодны для введения ДНК в клетки животных и растений. Системы переноса с помощью липосом низкотоксичны по отношению к клеткам

Метод биологической баллистики (биолистики) является одним из самых эффективных на сегодняшний день методов трансформации растений, особенно однодольных. Суть метода заключается в том, что на мельчайшие частички вольфрама, диаметром 0,6—1,2 мкм, напыляется ДНК вектора, содержащего необходимую для трансформирования генную конструкцию. Вольфрамовые частички, несущие ДНК, наносятся на целлофановую подложку и помещаются внутрь биолистической пушки. Каллус или суспензия клеток наносится в чашку Петри с агаризированной средой и помещается под биолистическую пушку на расстоянии 10—15 см. В пушке вакуумным насосом уменьшается давление до 0,1 атм. В момент сбрасывания давления вольфрамовые частички с 22 огромной скоростью выбрасываются из биолистической пушки и, разрывая клеточные стенки, входят в цитоплазму и ядро клеток. Обычно клетки, располагающиеся непосредственно по центру, погибают из-за огромного количества и давления вольфрамовых частиц, в то время как в зоне 0,6—1 см от центра находятся наиболее удачно протрансформированные клетки. Далее клетки осторожно переносят на среду для дальнейшего культивирования и регенерации. С помощью биолистической пушки были протрансформированы однодольные растения, такие, как кукуруза, рис, пшеница, ячмень. При этом были получены стабильные растения-трансформанты. Кроме успехов в получении трансгенных однодольных, биолистическая трансформация применяется для прямого переноса ДНК в эмбриогенную пыльцу и дальнейшего быстрого получения трансгенных дигаплоидных растений, которые являются важным этапом в селекционной работе. В настоящее время этим методом была проведена трансформация растений табака и после регенерации гаплоидных растений получены стабильные трансформанты.

Экспрессия гена:

Экспрессия гена это перенос генетической информации от ДНК посредством РНК к белкам и полипептидам. Под экспрессией гена понимают реализацию записанной в них информации.

Молекулярное клонирование - это лабораторный процесс, используемый для создания рекомбинантной ДНК. Это один из двух наиболее широко используемых методов, наряду с полимеразной цепной реакцией (ПЦР), используемых для управления репликацией любой конкретной последовательности ДНК, выбранной экспериментатором.

Между методами есть два принципиальных различия. Во-первых, молекулярное клонирование включает репликацию ДНК внутри живой клетки, в то время как ПЦР реплицирует ДНК в пробирке, свободной от живых клеток. Другое отличие состоит в том, что клонирование включает вырезание и вставку последовательностей ДНК, а ПЦР амплифицируется путем копирования существующей последовательности.

Для образования рекомбинантной ДНК требуется вектор клонирования , молекула ДНК, которая реплицируется в живой клетке. Векторы обычно происходят из плазмид или вирусов и представляют собой относительно небольшие сегменты ДНК, которые содержат необходимые генетические сигналы для репликации, а также дополнительные элементы для удобства вставки чужеродной ДНК, идентификации клеток, содержащих рекомбинантную ДНК, и, при необходимости, экспрессии чужеродная ДНК.

Выбор вектора для молекулярного клонирования зависит от выбора организма-хозяина, размера клонируемой ДНК и от того, должна ли и как экспрессироваться чужеродная ДНК. Сегменты ДНК могут быть объединены с использованием различных методов, таких как клонирование рестрикционного фермента / лигазы или сборка Гибсона. В стандартных протоколах клонирования любого фрагмента ДНК по существу включает семь этапов:

1 Выбор организма-хозяина и вектора клонирования,

2 Получение векторной ДНК,

3 Подготовка ДНК для клонирования,

4 Создание рекомбинантная ДНК,

5 Введение рекомбинантной ДНК в организм-хозяин,

6 Отбор организмов, содержащих рекомбинантную ДНК,

7 Скрининг клонов с желаемыми вставками ДНК и биологическими свойствами.

Вопрос № 2

Способы консервации, хранения и транспортировки продукции биотехнологических процессов.

Методы поддержания (хранения) культур микроорганизмов

Основная задача хранения культур – поддержание их жизнеспособности, сохранение стабильности таксономически важных признаков, а также определенных свойств, представляющих интерес для науки и производства. Проблема длительного хранения микроорганизмов сводится к торможению процессов обмена веществ. Хранение микроорганизмов осуществляется в специальных коллекциях типовых культур. В коллекциях жизнеспособность микроорганизмов поддерживается преимущественно следующими методами: 1) периодическими пересевами (субкультивированием);

2) под минеральным маслом;

3) высушиванием;

4) лиофилизацией;

5) в условиях низких и ультранизких температур.

Субкультивирование – традиционный метод хранения культур (чаще всего аспорогенных) и заключается он в пересевах культур на свежие питательные среды один–два раза в месяц. Между пересевами микроорганизмы хранят в темноте при температурах 5–20 °С. Удобно использовать в работе холодильник бытовой. При использовании этого метода хранения культур должны быть соблюдены три условия: 1) подходящая поддерживающая среда; 2) идеальная температура хранения; 3) необходимая частота пересевов. 13 Преимуществом метода является простота и удобный визуальный контроль за чистотой культуры или ее морфологической изменчивостью, а к недостаткам следует отнести возможность заражения, краткосрочность хранения, трудоемкость работы и большой расход реактивов.

Хранение под минеральным маслом заключается в следующем: культуру микроорганизмов выращивают на благоприятной агаризованной питательной среде и заливают стерильным вазелиновым маслом. Слой масла (0,5–1,0 см) замедляет скорость обменных процессов микроорганизмов и предохраняет поверхность среды от высыхания. Такие культуры хранят в холодильнике. Большинство сапрофитных бактерий сохраняют жизнеспособность в течение 8–14 лет, дрожжи и мицелиальные грибы пересевают через 2–3 года. Хранение под маслом имеет следующие преимущества: относительно длительное сохранение стабильности свойств микроорганизмов, сокращение затрат на пересевы, не требует специального оборудования.

Высушивание – простейший метод хранения микроорганизмов, в процессе которого происходит обезвоживание микробных клеток. В высушенных (до остаточной влажности 10–12 %) клетках биохимические реакции приостанавливаются или протекают очень медленно. Процесс высушивания лучше переносят спорообразующие виды. Широко применяют воздушное высушивание микроорганизмов на различных адсорбентах: в стерильной почве, песке, глине, фильтровальной бумаге, стеклянных бусах, крахмале и т. д. Адсорбенты защищают микроорганизмы от пересыхания, связывают свободную воду и поддерживают определенный уровень влажности. Разновидностью метода является L-высушивание, или высушивание из жидкого состояния: микроорганизмы в суспензионной среде высушивают под вакуумом в стеклянных ампулах, погруженных в водяную баню с контролируемой температурой. Высушенные культуры микроорганизмов легко хранить и транспортировать, они широко используются для хранения хлебопекарных и кормовых дрожжей, бактериальных удобрений, энтомопатогенных препаратов.

Лиофилизация заключается в удалении воды из замороженных суспензий под вакуумом, т. е. при этом вода испаряется, минуя жидкую фазу. Этот метод считается одним из самых экономичных и эффективных методов длительного хранения микроорганизмов. При его использовании многие разнородные группы бактерий и бактериофагов сохраняются в жизнеспособном состоянии 30 и более лет. 14 Выживаемость лиофилизированных клеток зависит от специфических особенностей вида и штамма, стадии роста и концентрации клеток, состава защитных сред, режима лиофилизации, условий реактивации. При подготовке клеток к лиофилизации их концентрированную суспензию (109 –1010 кл/мл) переносят в среду, содержащую протекторы: сыворотку крови, желатин, молоко, полиэтиленгликоль и др. и затем по 0,2 мл помещают в специальные ампулы. Для лиофилизации используют различные аппараты, простейшим из которых является эксикатор, который охлаждают, чтобы клеточная суспензия во время подключения к вакууму оставалась замороженной. Длительность замораживания – высушивания – 5–6 часов. Ампулы запаивают под вакуумом и хранят при 4 °С в темноте. После лиофилизации для выведения клеток из состояния анабиоза создают условия, снижающие осмотический шок, возникающий при вскрытии ампул. Лучше всего восстановление свойств происходит на богатых натуральных средах.

Хранение микроорганизмов при низких и ультранизких температурах используется в тех случаях, когда культуры не выдерживают лиофилизации (спирохеты, микоплазмы, различные вирусы). Микроорганизмы замораживают либо в рефрижераторах (от – 12 °С до – 80 °С) либо используют рефрижераторы с азотом (от – 150 °С до – 196 °С). При хранении бактерий в жидком азоте используют криопротекторы двух типов: 1) глицерин и диметилсульфоксид, которые легко проходят через клеточную мембрану и обеспечивают как внутри-, так и внеклеточную защиту; 2) сахароза, глюкоза, полиэтиленгликоль обеспечивают защитное действие на наружной поверхности клеточной мембраны. По 0,4 мл суспензии клеток (108 кл/мл) разливают в специальные ампулы, которые запаивают. Далее проводят двухэтапное охлаждение: с медленной (снижение температуры 1 °С/мин) и быстрой (снижение температуры 15–30 °С/мин) скоростью. Чтобы оживить замороженные культуры, их быстро оттаивают при 37 °С. К основным преимуществам криогенного сохранения микроорганизмов можно отнести: малую вероятность заражения культуры, сохранение в стабильном состоянии свойств микроорганизмов, небольшие временные и материальные затраты, возможность использования замороженных культур в качестве прямого инокулята.

Вопрос № 3

Производство метионина, основные продуценты, характеристика готового продукта, хранение и использование.

Метионин это алифатическая  α- аминокислота, бесцветные кристаллы со специфическим неприятным запахом, растворимые в воде, входит в число незаменимых аминокислот.

Синтез аминокислот производится двумя способами:

1. Процесс биотехнологического производства аминокислот включает прямую микробную ферментацию, микробиологический или ферментативный синтез из предшественников. В настоящее время наиболее распространен микробиологический синтез аминокислот. В промышленных масштабах аминокислоты получают либо экстракцией из белковых гидролизатов, либо очисткой продуктов метаболизма неспоролирующих грамположительных почвенных бактерий, например Corynebacterium или Brevibacterium spp. Обычно для повышения их продуктивности используют мутагенез с последующим отбором штаммов - сверхпродуцентов определенных аминокислот. Альтернативным подходом является выделение и изменение генов, кодирующих ключевые ферменты определенных биохимических реакций. В качестве альтернативы для синтеза аминокислот можно использовать E. coli. Изменение синтеза аминокислот осуществимо генетическими методами, в том числе за счет использования мутантных организмов, таких, как ауксотрофные и регуляторные мутунты. Промышленные штаммы как правило, несут несколько мутаций, затрагивающих механизмы регуляции целевой аминокслоты и ее предшественников. Среди продуцентов аминокислот – различные микоорганизмы, представители родов Corynebacterium, Brevibacterium, Bacillus, Aerobacter, Microbacterium, Eschrichia.

4.3. Химический синтез аминокислот

Химический синтез более универсален, чем микробиологический, и позволяет получать соединения любой возможной структуры. Здесь используется непищевое минеральное сырье, достигается любая концентрация продукта, однако, как правило, процесс многостадиен и требует более сложной аппаратуры. Оба способа обеспечивают получение природных аминокислот необходимой степени химической и оптической чистоты. Так что, в конечном счете, когда речь идет о промышленном производстве, последнее слово остается за экономикой: по данным зарубежных специалистов, при больших масштабах химические методы становятся более рентабельными. Наиболее широко разработан промышленный синтез метионина - аминокислоты, главным потребителем которой является птицеводство. Исходным веществом служит пропилен - продукт крекинга нефти. Пропилен окисляется до акролеина, который в результате серии реакций, превращается в рацемический метионин. В результате химического синтеза обычно получается смесь равных количеств L и D - изомеров аминокислот, в то время как в состав белков входят исключительно Lизомеры. D-изомеры организмом, как правило, не усваиваются и являются балластом. Следовательно, необходимо разделение, что неминуемо отрицательно сказывается на экономике. В последнее время в области расщепления рацемических смесей аминокислот достигнуты серьезные успехи. В работах СВ. Рогожина и В.А. Даванкова показано, что оптически неактивные аминокислоты, будучи ковалентно присоединены к нерастворимому полимерному носителю, легко образуют комплексы с медью, никелем и т.п. другая рацемическая аминокислота, находящаяся в растворе, занимает два вакантных координационных места у атома металла, причем прочность комплексов L - и D - изомеров различна. Сколь ни мало это различие, будучи повторенным многократно в процессе хроматографии, оно обеспечивает полное или частичное разделение оптических антиподов. Наилучшие результаты получены с D, L - пролином, который может быть препаративно разделен на оптические изомеры.

Соседние файлы в предмете Биотехнология