DZ_1_confot
.docЗадание на дробно-линейное отображение комплексной плоскости
1) выпишите вещественную и мнимую часть функции
2) проверьте, что функция аналитическая,(* а функции и гармонические)
3) вычислите образы вершин квадрата {0, 1, 1+i, i} при отображении
3) запишите функцию, как суперпозицию отображений
(вычислите значение коэффициентов A и B)
4) рассмотрите прямую Re(z)=1, нарисуйте ее образ в комплексной плоскости z_2 и далее в плоскостях z_3, z_4
рассмотрите прямую Im(z)=1, нарисуйте ее образ в комплексной плоскости z_4
рассмотрите прямую Re(z)=0, нарисуйте ее образ в комплексной плоскости z_4
рассмотрите прямую Im(z)=0, нарисуйте ее образ в комплексной плоскости z_4
нарисуйте в комплексной плоскости z_4 образ единичного квадрата {0, 1, 1+i, i}
из плоскости z
5)* обозначим w_1=f(1), w_2=f(i), найдите в плоскости z прообраз отрезка [w_1,w_2]
6) вычислите производную функции f
7) найдите периметр образа границы единичного квадрата в комплексной плоскости z_4
-- приближенно, как сумму длин хорд
-- точно, как интеграл (воспользуйтесь геометрическим смыслом модуля производной)
8) вычислите площадь образа единичного квадрата в комплексной плоскости z_4
-- приближенно, заменив область четырехугольником с вершинами в образах вершин исходного квадрата
--** вычислите точно площадь образа единичного квадрата (описать вычисление интеграла)
(воспользуйтесь геометрическим смыслом модуля производной)
9)** опишите итерации отображения и
Указания
1) к пункту 5
запишите обратное отображение
проведите сдвиг , вычислите
проведите через эти точки прямую
проведите прямую через начало координат, ортогональную первой
найдите точку их пересечения
поведите отображение , точки 0 и -- диметр окружности -- образа прямой, содержащей точки , что бы перейти в плоскость z остается провести сдвиг
проверьте, что полученная окружность проходит через соответствующие вершины квадрата.
2) к пункту 8
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
задание "дробно-линейное отображение"
f(z)=(a z+b)/(z+c+ i d)
вариант {"f",a,b,c,d}
1
{"f", 7, 5, 5, 4}
2
{"f", 3, 9, 4, 7}
3
{"f", 8, 9, 5, 2}
4
{"f", 5, 8, 3, 7}
5
{"f", 2, 5, 1, 3}
6
{"f", 6, 9, 4, 6}
7
{"f", 4, 9, 2, 7}
8
{"f", 8, 4, 6, 4}
9
{"f", 9, 9, 6, 2}
10
{"f", 9, 4, 4, 2}
11
{"f", 6, 9, 7, 4}
12
{"f", 8, 6, 7, 4}
13
{"f", 2, 5, 7, 2}
14
{"f", 5, 4, 1, 2}
15
{"f", 8, 6, 4, 5}
16
{"f", 6, 6, 7, 5}
17
{"f", 9, 5, 3, 3}
18
{"f", 7, 4, 1, 6}
19
{"f", 2, 9, 7, 2}
20
{"f", 5, 6, 6, 5}
21
{"f", 6, 8, 1, 5}
22
{"f", 3, 7, 1, 2}
23
{"f", 2, 7, 5, 5}
24
{"f", 4, 5, 3, 6}
25
{"f", 4, 5, 1, 3}
26
{"f", 9, 9, 2, 4}
27
{"f", 2, 8, 7, 6}
28
{"f", 9, 4, 6, 4}
29
{"f", 6, 4, 6, 5}
30
{"f", 2, 7, 3, 7}
31
{"f", 3, 6, 3, 5}
32
{"f", 7, 6, 5, 4}
33
{"f", 3, 8, 1, 3}
34
{"f", 5, 7, 3, 4}
35
{"f", 9, 9, 1, 5}
36
{"f", 8, 4, 5, 4}
37
{"f", 8, 6, 4, 6}
38
{"f", 2, 8, 7, 4}
39
{"f", 8, 6, 1, 2}
40
{"f", 7, 7, 5, 3}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Ответы к заданию "дробно-линейное отображение"
f(z)=(a z+b)/(z+c+ i d)
!!! у номера варианта в условии надо отбросить первую и последнюю цифру
вариант {"f",a,b,c,d}
1
{"f", 7, 5, 5, 4}
{"vershinj", 25/41 - (20*I)/41, 18/13 - (12*I)/13, 107/61 - (18*I)/61,
6/5 + I/5}
{"dlinj xord", {0.88874, 0.72862, 0.74305, 0.90634, 3.26677}}
{"dlinj dyg", {0.88986, 0.73001, 0.74407, 0.90819, 3.27214}}
{"plosch. chetjrexygol.", 0.66038}
{"plosch. obraza", 0.66917}
2
{"f", 3, 9, 4, 7}
{"vershinj", 36/65 - (63*I)/65, 30/37 - (42*I)/37, 84/89 - (81*I)/89,
3/4 - (3*I)/4}
{"dlinj xord", {0.30586, 0.26139, 0.2514, 0.29417, 1.11283}}
{"dlinj dyg", {0.30638, 0.26155, 0.25177, 0.29432, 1.11405}}
{"plosch. chetjrexygol.", 0.07689}
{"plosch. obraza", 0.07756}
3
{"f", 8, 9, 5, 2}
{"vershinj", 45/29 - (18*I)/29, 51/20 - (17*I)/20, 14/5 - I/15,
69/34 + (13*I)/34}
{"dlinj xord", {1.02427, 0.82225, 0.89186, 1.11098, 3.84938}}
{"dlinj dyg", {1.02486, 0.82502, 0.89274, 1.11573, 3.85836}}
{"plosch. chetjrexygol.", 0.91336}
{"plosch. obraza", 0.93043}
4
{"f", 5, 8, 3, 7}
{"vershinj", 12/29 - (28*I)/29, 4/5 - (7*I)/5, 23/20 - (21*I)/20,
64/73 - (49*I)/73}
{"dlinj xord", {0.58131, 0.49497, 0.46706, 0.54854, 2.0919}}
{"dlinj dyg", {0.58258, 0.49522, 0.46792, 0.54873, 2.09447}}
{"plosch. chetjrexygol.", 0.2715}
{"plosch. obraza", 0.27417}
5
{"f", 2, 5, 1, 3}
{"vershinj", 1/2 - (3*I)/2, 14/13 - (21*I)/13, 11/10 - (6*I)/5,
13/17 - (18*I)/17}
{"dlinj xord", {0.58834, 0.41602, 0.3638, 0.51449, 1.88267}}
{"dlinj dyg", {0.59535, 0.41709, 0.36671, 0.515, 1.89417}}
{"plosch. chetjrexygol.", 0.2138}
{"plosch. obraza", 0.22424}
6
{"f", 6, 9, 4, 6}
{"vershinj", 9/13 - (27*I)/26, 75/61 - (90*I)/61, 117/74 - (75*I)/74,
6/5 - (3*I)/5}
{"dlinj xord", {0.69246, 0.58047, 0.56233, 0.67082, 2.50609}}
{"dlinj dyg", {0.69378, 0.58101, 0.56329, 0.67135, 2.50943}}
{"plosch. chetjrexygol.", 0.38938}
{"plosch. obraza", 0.39357}
7
{"f", 4, 9, 2, 7}
{"vershinj", 18/53 - (63*I)/53, 39/58 - (91*I)/58, 71/73 - (92*I)/73,
25/34 - (16*I)/17}
{"dlinj xord", {0.50533, 0.43058, 0.39766, 0.4667, 1.80029}}
{"dlinj dyg", {0.50669, 0.43073, 0.39852, 0.46679, 1.80274}}
{"plosch. chetjrexygol.", 0.20093}
{"plosch. obraza", 0.20311}
8
{"f", 8, 4, 6, 4}
{"vershinj", 6/13 - (4*I)/13, 84/65 - (48*I)/65, 62/37 - (2*I)/37,
64/61 + (28*I)/61}
{"dlinj xord", {0.9358, 0.78446, 0.80977, 0.966, 3.49605}}
{"dlinj dyg", {0.93654, 0.7858, 0.81052, 0.96784, 3.50071}}
{"plosch. chetjrexygol.", 0.75778}
{"plosch. obraza", 0.76593}
9
{"f", 9, 9, 6, 2}
{"vershinj", 27/20 - (9*I)/20, 126/53 - (36*I)/53, 153/58 + (9*I)/58,
9/5 + (3*I)/5}
{"dlinj xord", {1.05262, 0.87415, 0.94868, 1.14236, 4.01783}}
{"dlinj dyg", {1.05295, 0.87649, 0.94922, 1.1462, 4.02489}}
{"plosch. chetjrexygol.", 0.99849}
{"plosch. obraza", 1.01248}
10
{"f", 9, 4, 4, 2}
{"vershinj", 4/5 - (2*I)/5, 65/29 - (26*I)/29, 46/17 + (3*I)/17,
43/25 + (24*I)/25}
{"dlinj xord", {1.52451, 1.16924, 1.25931, 1.64195, 5.59502}}
{"dlinj dyg", {1.52627, 1.17424, 1.26155, 1.65083, 5.6129}}
{"plosch. chetjrexygol.", 1.91946}
{"plosch. obraza", 1.96901}
11
{"f", 6, 9, 7, 4}
{"vershinj", 63/65 - (36*I)/65, 3/2 - (3*I)/4, 150/89 - (27*I)/89,
93/74 - (3*I)/74}
{"dlinj xord", {0.56585, 0.48357, 0.5028, 0.58834, 2.14058}}
{"dlinj dyg", {0.56614, 0.4843, 0.50311, 0.58935, 2.14292}}
{"plosch. chetjrexygol.", 0.2845}
{"plosch. obraza", 0.287}
12
{"f", 8, 6, 7, 4}
{"vershinj", 42/65 - (24*I)/65, 7/5 - (7*I)/10, 152/89 - (6*I)/89,
41/37 + (13*I)/37}
{"dlinj xord", {0.82322, 0.70352, 0.73148, 0.85594, 3.11417}}
{"dlinj dyg", {0.82364, 0.70458, 0.73195, 0.8574, 3.11757}}
{"plosch. chetjrexygol.", 0.60216}
{"plosch. obraza", 0.60745}
13
{"f", 2, 5, 7, 2}
{"vershinj", 35/53 - (10*I)/53, 14/17 - (7*I)/34, 62/73 - (5*I)/73,
41/58 - I/58}
{"dlinj xord", {0.16405, 0.13978, 0.15135, 0.17763, 0.63284}}
{"dlinj dyg", {0.16408, 0.14009, 0.15141, 0.17811, 0.6337}}
{"plosch. chetjrexygol.", 0.02482}
{"plosch. obraza", 0.02509}
14
{"f", 5, 4, 1, 2}
{"vershinj", 4/5 - (8*I)/5, 9/4 - (9*I)/4, 33/13 - (17*I)/13,
19/10 - (7*I)/10}
{"dlinj xord", {1.58902, 0.98547, 0.88143, 1.42126, 4.87719}}
{"dlinj dyg", {1.61677, 0.9919, 0.89193, 1.42604, 4.92665}}
{"plosch. chetjrexygol.", 1.39846}
{"plosch. obraza", 1.51673}
15
{"f", 8, 6, 4, 5}
{"vershinj", 24/41 - (30*I)/41, 7/5 - (7*I)/5, 118/61 - (44*I)/61,
18/13 - I/13}
{"dlinj xord", {1.05368, 0.86384, 0.84707, 1.03321, 3.79781}}
{"dlinj dyg", {1.05583, 0.86503, 0.84868, 1.03451, 3.80406}}
{"plosch. chetjrexygol.", 0.89253}
{"plosch. obraza", 0.90442}
16
{"f", 6, 6, 7, 5}
{"vershinj", 21/37 - (15*I)/37, 96/89 - (60*I)/89, 33/25 - (6*I)/25,
78/85 + (6*I)/85}
{"dlinj xord", {0.57743, 0.49673, 0.50828, 0.59086, 2.17332}}
{"dlinj dyg", {0.5778, 0.49732, 0.50864, 0.59163, 2.17541}}
{"plosch. chetjrexygol.", 0.2935}
{"plosch. obraza", 0.29577}
17
{"f", 9, 5, 3, 3}
{"vershinj", 5/6 - (5*I)/6, 56/25 - (42*I)/25, 23/8 - (5*I)/8,
51/25 + (7*I)/25}
{"dlinj xord", {1.64181, 1.23136, 1.23136, 1.64181, 5.74635}}
{"dlinj dyg", {1.64733, 1.2355, 1.2355, 1.64733, 5.76568}}
{"plosch. chetjrexygol.", 2.02166}
{"plosch. obraza", 2.07759}
18
{"f", 7, 4, 1, 6}
{"vershinj", 4/37 - (24*I)/37, 11/20 - (33*I)/20, 71/53 - (63*I)/53,
53/50 - (21*I)/50}
{"dlinj xord", {1.09451, 0.9145, 0.81795, 0.97896, 3.80595}}
{"dlinj dyg", {1.099, 0.91479, 0.8205, 0.97905, 3.81335}}
{"plosch. chetjrexygol.", 0.89508}
{"plosch. obraza", 0.90886}
19
{"f", 2, 9, 7, 2}
{"vershinj", 63/53 - (18*I)/53, 22/17 - (11*I)/34, 94/73 - (17*I)/73,
69/58 - (13*I)/58}
{"dlinj xord", {0.10665, 0.09088, 0.0984, 0.11548, 0.41143}}
{"dlinj dyg", {0.10667, 0.09107, 0.09843, 0.11579, 0.41199}}
{"plosch. chetjrexygol.", 0.01049}
{"plosch. obraza", 0.0106}
20
{"f", 5, 6, 6, 5}
{"vershinj", 36/61 - (30*I)/61, 77/74 - (55*I)/74, 107/85 - (31*I)/85,
11/12 - I/12}
{"dlinj xord", {0.51581, 0.43696, 0.44299, 0.52292, 1.91869}}
{"dlinj dyg", {0.51628, 0.43753, 0.44342, 0.52364, 1.92089}}
{"plosch. chetjrexygol.", 0.22849}
{"plosch. obraza", 0.23061}
21
{"f", 6, 8, 1, 5}
{"vershinj", 4/13 - (20*I)/13, 28/29 - (70*I)/29, 8/5 - (9*I)/5,
44/37 - (42*I)/37}
{"dlinj xord", {1.09496, 0.88278, 0.78154, 0.96938, 3.72867}}
{"dlinj dyg", {1.1011, 0.88329, 0.78474, 0.96955, 3.73869}}
{"plosch. chetjrexygol.", 0.85545}
{"plosch. obraza", 0.87363}
22
{"f", 3, 7, 1, 2}
{"vershinj", 7/5 - (14*I)/5, 5/2 - (5*I)/2, 29/13 - (24*I)/13, 8/5 - (9*I)/5}
{"dlinj xord", {1.14017, 0.7071, 0.63245, 1.0198, 3.49954}}
{"dlinj dyg", {1.16008, 0.71171, 0.63999, 1.02323, 3.53503}}
{"plosch. chetjrexygol.", 0.72}
{"plosch. obraza", 0.78089}
23
{"f", 2, 7, 5, 5}
{"vershinj", 7/10 - (7*I)/10, 54/61 - (45*I)/61, 11/12 - (7*I)/12,
47/61 - (32*I)/61}
{"dlinj xord", {0.18904, 0.15753, 0.15753, 0.18904, 0.69316}}
{"dlinj dyg", {0.1893, 0.15775, 0.15775, 0.1893, 0.69411}}
{"plosch. chetjrexygol.", 0.02978}
{"plosch. obraza", 0.03011}
24
{"f", 4, 5, 3, 6}
{"vershinj", 1/3 - (2*I)/3, 9/13 - (27*I)/26, 64/65 - (47*I)/65,
43/58 - (23*I)/58}
{"dlinj xord", {0.51681, 0.43001, 0.40716, 0.48935, 1.84333}}
{"dlinj dyg", {0.51814, 0.43035, 0.40805, 0.48963, 1.84618}}
{"plosch. chetjrexygol.", 0.21041}
{"plosch. obraza", 0.21302}
25
{"f", 4, 5, 1, 3}
{"vershinj", 1/2 - (3*I)/2, 18/13 - (27*I)/13, 17/10 - (7*I)/5,
21/17 - (16*I)/17}
{"dlinj xord", {1.05611, 0.74678, 0.65304, 0.92354, 3.3795}}
{"dlinj dyg", {1.06869, 0.74871, 0.65828, 0.92445, 3.40015}}
{"plosch. chetjrexygol.", 0.68891}
{"plosch. obraza", 0.72257}
26
{"f", 9, 9, 2, 4}
{"vershinj", 9/10 - (9*I)/5, 54/25 - (72*I)/25, 99/34 - (63*I)/34,
63/29 - (27*I)/29}
{"dlinj xord", {1.65951, 1.27279, 1.18175, 1.54082, 5.65489}}
{"dlinj dyg", {1.66849, 1.27504, 1.1868, 1.5426, 5.67295}}
{"plosch. chetjrexygol.", 1.96075}
{"plosch. obraza", 2.01137}
27
{"f", 2, 8, 7, 6}
{"vershinj", 56/85 - (48*I)/85, 4/5 - (3*I)/5, 94/113 - (54*I)/113,
5/7 - (3*I)/7}
{"dlinj xord", {0.14552, 0.12621, 0.12749, 0.14699, 0.54622}}
{"dlinj dyg", {0.14562, 0.12633, 0.12758, 0.14714, 0.54668}}
{"plosch. chetjrexygol.", 0.01855}
{"plosch. obraza", 0.01867}
28
{"f", 9, 4, 6, 4}
{"vershinj", 6/13 - (4*I)/13, 7/5 - (4*I)/5, 68/37 - I/37, 69/61 + (34*I)/61}
{"dlinj xord", {1.05975, 0.88836, 0.91702, 1.09394, 3.95909}}
{"dlinj dyg", {1.06059, 0.88987, 0.91787, 1.09602, 3.96437}}
{"plosch. chetjrexygol.", 0.9718}
{"plosch. obraza", 0.98226}
29
{"f", 6, 4, 6, 5}
{"vershinj", 24/61 - (20*I)/61, 35/37 - (25*I)/37, 106/85 - (18*I)/85,
5/6 + I/6}
{"dlinj xord", {0.65286, 0.55306, 0.56069, 0.66186, 2.42849}}
{"dlinj dyg", {0.65346, 0.55378, 0.56124, 0.66277, 2.43127}}
{"plosch. chetjrexygol.", 0.36605}
{"plosch. obraza", 0.36944}
30
{"f", 2, 7, 3, 7}
{"vershinj", 21/58 - (49*I)/58, 36/65 - (63*I)/65, 13/20 - (4*I)/5,
37/73 - (50*I)/73}
{"dlinj xord", {0.22859, 0.19463, 0.18366, 0.2157, 0.8226}}
{"dlinj dyg", {0.22909, 0.19473, 0.184, 0.21578, 0.82361}}
{"plosch. chetjrexygol.", 0.04198}
{"plosch. obraza", 0.04239}
31
{"f", 3, 6, 3, 5}
{"vershinj", 9/17 - (15*I)/17, 36/41 - (45*I)/41, 27/26 - (21*I)/26,
4/5 - (3*I)/5}
{"dlinj xord", {0.4097, 0.33129, 0.31622, 0.39107, 1.4483}}
{"dlinj dyg", {0.41094, 0.33171, 0.31704, 0.39146, 1.45116}}
{"plosch. chetjrexygol.", 0.12955}
{"plosch. obraza", 0.13161}
32
{"f", 7, 6, 5, 4}
{"vershinj", 30/41 - (24*I)/41, 3/2 - I, 113/61 - (23*I)/61, 13/10 + I/10}
{"dlinj xord", {0.87303, 0.71574, 0.72992, 0.89032, 3.20903}}
{"dlinj dyg", {0.87413, 0.7171, 0.73092, 0.89214, 3.21431}}
{"plosch. chetjrexygol.", 0.63724}
{"plosch. obraza", 0.64573}
33
{"f", 3, 8, 1, 3}
{"vershinj", 4/5 - (12*I)/5, 22/13 - (33*I)/13, 17/10 - (19*I)/10,
20/17 - (29*I)/17}
{"dlinj xord", {0.90298, 0.6385, 0.55835, 0.78963, 2.88949}}
{"dlinj dyg", {0.91374, 0.64015, 0.56283, 0.79041, 2.90714}}
{"plosch. chetjrexygol.", 0.50361}
{"plosch. obraza", 0.52823}
34
{"f", 5, 7, 3, 4}
{"vershinj", 21/25 - (28*I)/25, 3/2 - (3*I)/2, 73/41 - (40*I)/41,
23/17 - (10*I)/17}
{"dlinj xord", {0.76157, 0.59469, 0.57693, 0.73883, 2.67204}}
{"dlinj dyg", {0.76413, 0.5959, 0.57867, 0.74014, 2.67886}}
{"plosch. chetjrexygol.", 0.43936}
{"plosch. obraza", 0.44851}
35
{"f", 9, 9, 1, 5}
{"vershinj", 9/26 - (45*I)/26, 36/29 - (90*I)/29, 9/4 - (9*I)/4,
63/37 - (45*I)/37}
{"dlinj xord", {1.6388, 1.32124, 1.16971, 1.45085, 5.58062}}
{"dlinj dyg", {1.64799, 1.322, 1.17451, 1.4511, 5.59562}}
{"plosch. chetjrexygol.", 1.91626}
{"plosch. obraza", 1.95698}
36
{"f", 8, 4, 5, 4}
{"vershinj", 20/41 - (16*I)/41, 18/13 - (12*I)/13, 112/61 - (12*I)/61,
6/5 + (2*I)/5}
{"dlinj xord", {1.04315, 0.85521, 0.87215, 1.06381, 3.83435}}
{"dlinj dyg", {1.04446, 0.85684, 0.87335, 1.06599, 3.84065}}
{"plosch. chetjrexygol.", 0.90978}
{"plosch. obraza", 0.9219}
37
{"f", 8, 6, 4, 6}
{"vershinj", 6/13 - (9*I)/13, 70/61 - (84*I)/61, 63/37 - (29*I)/37,
16/13 - (2*I)/13}
{"dlinj xord", {0.96926, 0.8125, 0.78711, 0.93896, 3.50784}}
{"dlinj dyg", {0.9711, 0.81325, 0.78845, 0.9397, 3.51252}}
{"plosch. chetjrexygol.", 0.7629}
{"plosch. obraza", 0.77111}
38
{"f", 2, 8, 7, 4}
{"vershinj", 56/65 - (32*I)/65, 1 - I/2, 90/89 - (34*I)/89, 33/37 - (13*I)/37}
{"dlinj xord", {0.13867, 0.11851, 0.12322, 0.14418, 0.52459}}
{"dlinj dyg", {0.13874, 0.11868, 0.1233, 0.14443, 0.52516}}
{"plosch. chetjrexygol.", 0.01708}
{"plosch. obraza", 0.01723}
39
{"f", 8, 6, 1, 2}
{"vershinj", 6/5 - (12*I)/5, 7/2 - (7*I)/2, 4 - 2*I, 3 - I}
{"dlinj xord", {2.5495, 1.58113, 1.41421, 2.28035, 7.82521}}
{"dlinj dyg", {2.59403, 1.59145, 1.43106, 2.28802, 7.90457}}
{"plosch. chetjrexygol.", 3.6}
{"plosch. obraza", 3.90447}
40
{"f", 7, 7, 5, 3}
{"vershinj", 35/34 - (21*I)/34, 28/15 - (14*I)/15, 28/13 - (7*I)/26,
63/41 + (7*I)/41}
{"dlinj xord", {0.89479, 0.72353, 0.758, 0.93742, 3.31376}}
{"dlinj dyg", {0.89567, 0.7254, 0.75896, 0.94025, 3.32028}}
{"plosch. chetjrexygol.", 0.67822}
{"plosch. obraza", 0.68901}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
программа генератор
(*f = (a (x+i y)+b)/(x+i y+c+id)=u + i v *)
u[x_, y_] := a + ((b - a c)(x + c) + a d(y + d))/((x + c)^2 + (y + d)^2);
v[x_, y_] := ((b - a c)(y + d) - a d(x + c))/((x + c)^2 + (y + d)^2);
dl[x1_, y1_, x2_, y2_] :=
Sqrt[(u[x1, y1] - u[x2, y2])^2 + (v[x1, y1] - v[x2, y2])^2];
sp := (Abs[Det[{{u[1, 0] - u[0, 0], v[1, 0] - v[0, 0]}, {u[0, 1] - u[0, 0],
v[0, 1]- v[0, 0]}}]] +
Abs[Det[{{u[1, 0]-u[1, 1], v[1, 0] - v[1, 1]}, {u[0, 1] - u[1, 1], v[0, 1] - v[1,1]}}]])/2;
toch[x_, nn_] := (x1 = IntegerPart[10^nn x]; toch[x, nn] = N[x1 10^(-nn)]);
0 >> confot;
nn = 5;
Do[(
a = dat[[vv, 1]]; b = dat[[vv, 2]]; c = dat[[vv, 3]]; d = dat[[vv, 4]];
(* vjchislyaem dlinj xord *)
La1 = dl[0, 0, 1, 0]; La2 = dl[1, 0, 1,
1]; La3 = dl[1, 1, 0, 1]; La4 = dl[0, 1, 0, 0];
Laa = {toch[La1, nn], toch[La2, nn], toch[
La3, nn], toch[La4, nn], toch[La1 + La2 + La3 + La4, nn]};
(* vjcislyaem dlinj dyg *)
bb = Sqrt[(b - a c)^2 + (a d)^2];
L1 = bb NIntegrate[1/((x + c)^2 + (d)^2), {x, 0, 1}];
L2 = bb NIntegrate[1/((1 + c)^2 + (y + d)^2), {y, 0, 1}];
L3 = bb NIntegrate[1/((x + c)^2 + (1 + d)^2), {x, 0, 1}];
L4 = bb NIntegrate[1/((c)^2 + (y + d)^2), {y, 0, 1}];
Lea = {toch[L1, nn], toch[L2, nn], toch[L3, nn], toch[L4, nn], toch[L1 +
L2 + L3 + L4, nn]};
(* ploshad' chetjrex ygol'nika xord *)
Sa = sp;
(* ploschad' obraza kvadrata *)
Se = (bb)^2NIntegrate[1/((x + c)^2 + (y + d)^2)^2, {x, 0, 1}, {
y, 0, 1}];
If[Sa > 0.1, ( v >>> confot;
{"f", a, b, c, d} >>> confot;
{"vershinj", b/(c + i d), (a + b)/(1 + c + i d),
(a + i a + b)/(1 + i + c + i d), (\i a + b)/(i + c + i d)} >>> confot;
{"dlinj xord", Laa} >>> confot;
{"dlinj dyg", Lea} >>> confot;
{"plosch. chetjrexygol.", toch[Sa, nn]} >>> confot;
{"plosch. obraza", toch[Se, nn]} >>> confot)]), {vv, 1, 40}];