
МИНОБРНАУКИ РОССИИ
Государственное образовательное учреждение высшего профессионального образования
«Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина)»
______________________________ (СПбГЭТУ)___________________________
Факультет ФТР
Кафедра МИТ
Индивидуальное задание
По дисциплине: Теория надежности и контроль качества РЭС
Выполнил: Оценка:_____________
Студент группы 1191
Сафарова И.Ш.
Дата:_______________
Санкт-Петербург
2014Г. Оглавление:
Основные характеристики надежности РЭС…………………………….3
Оценка надежности РЭС при внезапных отказах……………………….5
Задание……………………………………………………………………..6
Краткое описание устройства…………………………………………….7
Расчеты
Прикидочный расчет………………………………………………….8
Уточненный расчет…………………………………………………..10
Выводы……………………………………………………………………15
Список использованной литературы……………………………………14
Основные характеристики надежности рэс
Надежность – свойство изделия выполнять заданные функции, сохраняя во времени значения установленных параметров в Заданных предела, соответствующих заданным режимам и условиям применения, технического обслуживания, хранения и транспортировки.
Для характеристики надежности используется понятие работоспособности состояния. Событие, заключающееся в нарушении работоспособности, называется отказом.
В зависимости от степени соответствия изделия той или иной группе требований различают исправное и неисправное состояние. Исправным называют такое состояние устройства, при которой оно соответствует всем требованиям, установленным нормативно – технической документацией.
В качестве показателей надежности невосстанавливаемых элементов используются:
- вероятность безотказной работы Р(t)
- вероятность отказа Q(t)
- частота отказов f(t)
- среднее время наработки на отказ Тср
- интенсивность отказов λ (t)
Так как в теории надежности в качестве события рассматривается отказ, то показателем, которым измеряется надежность, является безразмерная величина в виде некоторой функции от времени – вероятность безотказной работы Р(t).
Вероятность безотказной работы Р(t) – вероятность того, что при определенных условиях эксплуатации и в пределах заданной наработки отказа не возникнет. Пусть t – время наработки, а tотк - случайный момент наступления отказа, то есть время от начала эксплуатации до первого отказа. Для каждого значения t существует определенная вероятность того, что отказ не произойдет до этого момента.
P(t) = P{t < tотк}
Где Р(t) - функция времени, представляющая собой закон распределения времени безотказной работы устройства.
Вероятность
безотказной работы статистически
определяется отношением количества
одинаковых устройствN,
безотказно проработавших до момента
времени t
к числе устройств Т, работоспособных в
начальный момент времени:
Вероятность отказа Q(t) связанна с вероятностью безотказной работы соотношением:
Q(t) = 1-P(t)
Частота отказов – плотность распределения наработки о отказа.
Определяется формулой:
f(t) = - dP(t)/dt
Статистически
величина частоты отказы может быть
определена для моментаt
подсчетом числа изделий n,
отказавших за интервал времени ti.
Интенсивность отказов - условная плотность вероятности возникновения отказа невосстанавливаемого устройства, определяемая для рассматриваемого момента времени непрерывной работы объекта при условии, что до этого момента отказ не возникнет. Этот показатель не связан с моментом начала работы устройства.
Из определения интенсивности отказов следует, что
Р(t)*
(t)*
t
= f(t)*
t,
где f(t)
– плотность распределения наработки
до отказа.
Статистически λ *(t) показывает, какая доля отработавших в некоторый момент времени е невосстанавливаемых устройств выходит из строя в единицу времени после этого момента
,
где ni
– разность
между числом отказов к моменту времени
t
+ t
и числом отказов к моменту времени t,
N(t)
– количество изделий, работоспособных
в момент времени t,
причем N(t)
меньше No,
поскольку часть изделий за время t
отказала.
Типовая зависимость интенсивности отказов имеет U – образный вид.
В период приработки и старения интенсивность отказов несколько выше, чем в период нормальной эксплуатации.
Статистически
по результатам испытаний оценка среднего
времени наработки до отказа может быть
определена как
На практике в прикидочных оценках наиболее часто используется экспоненциальный закон распределения, поскольку он характерен для сложных систем, к которым относится большинство РЭС.