
- •Оглавление
- •Искусственные нейронные сети (инс) Строение биологического нейрона
- •Биологический нейрон и его состав.
- •Искусственный нейрон и его состав.
- •Как работают нейросети (почему они могут решать задачи) 2 2 2
- •Синапсы
- •Уровень сложности нейросетей
- •6. Возможности компьютерного моделирования нейронных сетей.
- •7. Скорости обработки информации реализациями инс и мозгом человека
- •Классификация проблем по сложности
- •8. Типы задач, решаемых с помощью искусственных нейронных сетей (инс). Задачи, решаемые с помощью инс
- •12. Преимущества и недостатки нейронных сетей
- •Устойчивость к шумам входных данных
- •Адаптация к изменениям
- •3. Отказоустойчивость
- •Сверхвысокое быстродействие
- •Недостатки нейронных сетей
- •Ответ инс всегда приблизительный
- •Невозможно многошаговое принятие решений
- •27. Решение задачи принятия решения с помощью инс
- •3. Неспособность решать вычислительные задачи
- •3.Разновидности функций активации искусственного нейрона
- •1. Единичная ступенчатая функция
- •Сигмоидальная функция
- •4.Логистическая функция активации и ее преимущества.
- •3. Гиперболический тангенс
- •9. Виды инс
- •10. Инс со свойством кратковременной памяти.
- •60. Искусственные нейронные системы со свойством кратковременной памяти
- •Обучение нейронной сети
- •11. Обучение инс с учителем и без учителя
- •13. Состав персептрона Розенблатта
- •14. Значения выходов сенсоров, r-элементов, s-a и a-r связей в персептроне.
- •5. Нейронная сеть человека и ее оценки.
- •Разновидности персептронов.
- •19. Классификация персептронов
- •16. Отличие однослойного персептрона от искусственного нейрона
- •17. Задачи, решаемые с помощью персептронов.
- •18. Теоремы Розенблатта и условия их выполнения. Теорема Розенблатта.
- •Вторая теорема Розенблатта.
- •20. Линейная разделимость
- •22. Прикладные возможности нейронных сетей
- •23. Решение задач классификации и распознавания образов с помощью инс
- •24. Решение задач прогнозирования с помощью инс
- •25. Решение задач идентификации и управления динамическими процессами
- •26. Решение задач ассоциации с помощью инс
- •28. Черты искусственного интеллекта в нейронных сетях.
- •Модели нейронов и методы их обучения
- •29. Персептрон МакКаллока-Питса
- •30. Обучение персептрона. Правило Видроу-Хоффа
- •31. Сигмоидальный нейрон
- •32. Нейрон типа «адалайн»
- •33. Сеть мадалайн
- •34. Инстар и аутстар Гроссберга
- •35. Нейроны типа wta
- •36. Нейронная сеть типа wta и ее обучение
- •37. Проблема мертвых нейронов
- •38. Модель нейрона Хебба
- •39. Коэффициент забывания при обучении по правилу Хебба
- •40. Обучение линейного нейрона по правилу Ойя
- •41. Однонаправленные многослойные сети сигмоидального типа
- •42. Однослойная сеть. Ограниченность возможностей однослойных сетей
- •43. Решение проблемы нелинейного разделения применением двух линейных разделителей
- •44. Структура инс, выполняющей функцию xor
- •45. Многослойный персептрон
- •46. Алгоритм обратного распространения ошибки
- •47. Этапы алгоритма обратного распространения ошибки
- •48. Градиентные алгоритмы обучения сети
- •50. Математические основы теории радиальных инс
- •51. Простейшая нейронная сеть радиального типа
- •49. Радиальная нейронная сеть
- •52. Отличия радиальной инс от сигмоидальной
- •53. Сравнение радиальных и сигмоидальных инс
- •74. Алгоритм нейронного газа
- •75. Сети с самоорганизацией корреляционного типа
- •76. Нейронные сети рса
- •77. Нейронные ica-сети Херольта-Джуттена
- •Литература
- •Свёрточные нейронные сети
- •54. Сверточные нейронные сети (снс), их особенности и структура
- •Слои свёрточной нейронной сети
- •57. Преимущества снс
- •56. Параметры сверточного слоя в снс
- •55. Алгоритмы обучения снс
3. Гиперболический тангенс
Однако есть и еще одна сигмоида – гиперболический тангенс. Он применяется в качестве функции активации биологами для более реалистичной модели нервной клетки.
Такая функция позволяет получить на выходе значения разных знаков (например, от -1 до 1), что может быть полезным для ряда сетей.
Функция записывается
следующим образом:
В данной формуле параметр а также определяет степень крутизны графика этой функции.
График функции гиперболического тангенса похож на график логистической функции. Гиперболический тангенс обладает всеми полезными свойствами, которые имеет и логистическая функция.
Математическая модель искусственного нейрона с n входами:
где ɸ – функция активации;
– взвешенная сумма
как сумма произведений входных сигналов
на соответствующие веса.
9. Виды инс
Однослойные нейронные сети
В однослойных нейронных сетях сигналы с входного слоя сразу подаются на выходной слой. Он производит необходимые вычисления, результаты которых сразу подаются на выходы.
Однослойная нейронная сеть (Single-layer neural network) – сеть, в которой сигналы от входного слоя сразу подаются на выходной слой, который и преобразует сигнал и сразу же выдает ответ.
Многослойные нейронные сети
Такие сети, помимо входного и выходного слоев нейронов, характеризуются еще и скрытым слоем (слоями). Эти скрытые слои находятся между входным и выходным слоями.
Такая структура нейронных сетей копирует многослойную структуру определенных отделов мозга. Название скрытый слой получил неслучайно. Дело в том, что только относительно недавно были разработаны методы обучения нейронов скрытого слоя. До этого обходились только однослойными нейросетями.
Многослойные нейронные сети обладают гораздо большими возможностями, чем однослойные.
Структура многослойных нейронных сетей копирует многослойную структуру определенных отделов мозга
Многослойная нейронная сеть (Multilayer neural network) – нейронная сеть, состоящая из входного, выходного и расположенных между ними скрытых слоев нейронов.
Сети прямого распространения (feedforward)
Сети прямого распространения (Feedforward neural network) (feedforward сети) – искусственные нейронные сети, в которых сигнал распространяется строго от входного слоя к выходному. В обратном направлении сигнал не распространяется.
Такие сети широко используются и вполне успешно решают определенный класс задач: прогнозирование, кластеризация и распознавание.
Сети с обратными связями
В сетях такого типа сигнал может идти и в обратную сторону. В чем преимущество?
Дело в том, что в сетях прямого распространения выход сети определяется входным сигналом и весовыми коэффициентами при искусственных нейронах.
А в сетях с обратными связями выходы нейронов могут возвращаться на входы. Это означает, что выход какого-нибудь нейрона определяется не только его весами и входным сигналом, но еще и предыдущими выходами (так как они снова вернулись на входы).