
- •Оглавление
- •Искусственные нейронные сети (инс) Строение биологического нейрона
- •Биологический нейрон и его состав.
- •Искусственный нейрон и его состав.
- •Как работают нейросети (почему они могут решать задачи) 2 2 2
- •Синапсы
- •Уровень сложности нейросетей
- •6. Возможности компьютерного моделирования нейронных сетей.
- •7. Скорости обработки информации реализациями инс и мозгом человека
- •Классификация проблем по сложности
- •8. Типы задач, решаемых с помощью искусственных нейронных сетей (инс). Задачи, решаемые с помощью инс
- •12. Преимущества и недостатки нейронных сетей
- •Устойчивость к шумам входных данных
- •Адаптация к изменениям
- •3. Отказоустойчивость
- •Сверхвысокое быстродействие
- •Недостатки нейронных сетей
- •Ответ инс всегда приблизительный
- •Невозможно многошаговое принятие решений
- •27. Решение задачи принятия решения с помощью инс
- •3. Неспособность решать вычислительные задачи
- •3.Разновидности функций активации искусственного нейрона
- •1. Единичная ступенчатая функция
- •Сигмоидальная функция
- •4.Логистическая функция активации и ее преимущества.
- •3. Гиперболический тангенс
- •9. Виды инс
- •10. Инс со свойством кратковременной памяти.
- •60. Искусственные нейронные системы со свойством кратковременной памяти
- •Обучение нейронной сети
- •11. Обучение инс с учителем и без учителя
- •13. Состав персептрона Розенблатта
- •14. Значения выходов сенсоров, r-элементов, s-a и a-r связей в персептроне.
- •5. Нейронная сеть человека и ее оценки.
- •Разновидности персептронов.
- •19. Классификация персептронов
- •16. Отличие однослойного персептрона от искусственного нейрона
- •17. Задачи, решаемые с помощью персептронов.
- •18. Теоремы Розенблатта и условия их выполнения. Теорема Розенблатта.
- •Вторая теорема Розенблатта.
- •20. Линейная разделимость
- •22. Прикладные возможности нейронных сетей
- •23. Решение задач классификации и распознавания образов с помощью инс
- •24. Решение задач прогнозирования с помощью инс
- •25. Решение задач идентификации и управления динамическими процессами
- •26. Решение задач ассоциации с помощью инс
- •28. Черты искусственного интеллекта в нейронных сетях.
- •Модели нейронов и методы их обучения
- •29. Персептрон МакКаллока-Питса
- •30. Обучение персептрона. Правило Видроу-Хоффа
- •31. Сигмоидальный нейрон
- •32. Нейрон типа «адалайн»
- •33. Сеть мадалайн
- •34. Инстар и аутстар Гроссберга
- •35. Нейроны типа wta
- •36. Нейронная сеть типа wta и ее обучение
- •37. Проблема мертвых нейронов
- •38. Модель нейрона Хебба
- •39. Коэффициент забывания при обучении по правилу Хебба
- •40. Обучение линейного нейрона по правилу Ойя
- •41. Однонаправленные многослойные сети сигмоидального типа
- •42. Однослойная сеть. Ограниченность возможностей однослойных сетей
- •43. Решение проблемы нелинейного разделения применением двух линейных разделителей
- •44. Структура инс, выполняющей функцию xor
- •45. Многослойный персептрон
- •46. Алгоритм обратного распространения ошибки
- •47. Этапы алгоритма обратного распространения ошибки
- •48. Градиентные алгоритмы обучения сети
- •50. Математические основы теории радиальных инс
- •51. Простейшая нейронная сеть радиального типа
- •49. Радиальная нейронная сеть
- •52. Отличия радиальной инс от сигмоидальной
- •53. Сравнение радиальных и сигмоидальных инс
- •74. Алгоритм нейронного газа
- •75. Сети с самоорганизацией корреляционного типа
- •76. Нейронные сети рса
- •77. Нейронные ica-сети Херольта-Джуттена
- •Литература
- •Свёрточные нейронные сети
- •54. Сверточные нейронные сети (снс), их особенности и структура
- •Слои свёрточной нейронной сети
- •57. Преимущества снс
- •56. Параметры сверточного слоя в снс
- •55. Алгоритмы обучения снс
3.Разновидности функций активации искусственного нейрона
Виды функций активации
1. Единичная ступенчатая функция
Самый простой вид функции активации. Выход нейрона может быть равен только 0 или 1. Если взвешенная сумма больше определенного порога, то выход нейрона равен 1. Если ниже, то 0.
Как ее можно использовать? Предположим, что мы поедем на море только тогда, когда взвешенная сумма больше или равна 5. Значит, наш порог равен 5:
В нашем примере взвешенная сумма равнялась 6, а значит, выходной сигнал нашего нейрона равен 1. Итак, мы едем на море.
Однако если бы погода на море была бы плохой, а также поездка была бы очень дорогой, но имелась бы закусочная и обстановка с работой нормальная (входы: 0011), то взвешенная сумма равнялась бы 2, а значит выход нейрона равнялся бы 0. Итак, мы никуда не едем.
В общем, нейрон накапливает сигнал внутри себя, и когда накопленный сигнал (взвешенная сумма) становится очень большим (больше порога нейрона), то нейрон выдает выходной сигнал, равный 1.
На горизонтальной оси расположены величины взвешенной суммы. На вертикальной оси — значения выходного сигнала. Как легко видеть, возможны только два значения выходного сигнала: 0 или 1. Причем 0 будет выдаваться всегда: от минус бесконечности и вплоть до некоторого значения взвешенной суммы, называемого порогом. Если взвешенная сумма равна порогу или больше него, то функция выдает 1.
Сигмоидальная функция
4.Логистическая функция активации и ее преимущества.
Существует целое семейство сигмоидальных функций, некоторые из которых применяют в качестве функции активации в искусственных нейронах.
Все эти функции обладают некоторыми очень полезными свойствами, ради которых их и применяют в нейронных сетях. Наиболее часто используемая в нейронных сетях сигмоида – логистическая функция.
Вспомним искусственный нейрон, определяющий, надо ли ехать на море. В случае с функцией единичного скачка все было очевидно. Мы либо едем на море (1), либо нет (0).
Здесь же случай более приближенный к реальности. Мы до конца полностью не уверены – стоит ли ехать? Тогда использование логистической функции в качестве функции активации приведет к тому, что вы будете получать цифру между 0 и 1. Причем чем больше взвешенная сумма, тем ближе выход будет к 1 (но никогда не будет точно ей равен). И наоборот, чем меньше взвешенная сумма, тем ближе выход нейрона будет к 0.
Например, выход нейрона равен 0.8. Это значит, что он считает, что поехать на море все-таки стоит. Если бы его выход был бы равен 0.2, то это означает, что он почти наверняка против поездки на море.
Какие же замечательные свойства имеет логистическая функция?
она является «сжимающей» функцией, то есть вне зависимости от аргумента (взвешенной суммы), выходной сигнал всегда будет в пределах от 0 до 1
она более гибкая, чем функция единичного скачка – ее результатом может быть не только 0 и 1, но и любое число между ними
во всех точках она имеет производную, и эта производная может быть выражена через эту же функцию
Именно из-за этих свойств логистическая функция чаще всего используются в качестве функции активации в искусственных нейронах.