
- •Оглавление
- •Искусственные нейронные сети (инс) Строение биологического нейрона
- •Биологический нейрон и его состав.
- •Искусственный нейрон и его состав.
- •Как работают нейросети (почему они могут решать задачи) 2 2 2
- •Синапсы
- •Уровень сложности нейросетей
- •6. Возможности компьютерного моделирования нейронных сетей.
- •7. Скорости обработки информации реализациями инс и мозгом человека
- •Классификация проблем по сложности
- •8. Типы задач, решаемых с помощью искусственных нейронных сетей (инс). Задачи, решаемые с помощью инс
- •12. Преимущества и недостатки нейронных сетей
- •Устойчивость к шумам входных данных
- •Адаптация к изменениям
- •3. Отказоустойчивость
- •Сверхвысокое быстродействие
- •Недостатки нейронных сетей
- •Ответ инс всегда приблизительный
- •Невозможно многошаговое принятие решений
- •27. Решение задачи принятия решения с помощью инс
- •3. Неспособность решать вычислительные задачи
- •3.Разновидности функций активации искусственного нейрона
- •1. Единичная ступенчатая функция
- •Сигмоидальная функция
- •4.Логистическая функция активации и ее преимущества.
- •3. Гиперболический тангенс
- •9. Виды инс
- •10. Инс со свойством кратковременной памяти.
- •60. Искусственные нейронные системы со свойством кратковременной памяти
- •Обучение нейронной сети
- •11. Обучение инс с учителем и без учителя
- •13. Состав персептрона Розенблатта
- •14. Значения выходов сенсоров, r-элементов, s-a и a-r связей в персептроне.
- •5. Нейронная сеть человека и ее оценки.
- •Разновидности персептронов.
- •19. Классификация персептронов
- •16. Отличие однослойного персептрона от искусственного нейрона
- •17. Задачи, решаемые с помощью персептронов.
- •18. Теоремы Розенблатта и условия их выполнения. Теорема Розенблатта.
- •Вторая теорема Розенблатта.
- •20. Линейная разделимость
- •22. Прикладные возможности нейронных сетей
- •23. Решение задач классификации и распознавания образов с помощью инс
- •24. Решение задач прогнозирования с помощью инс
- •25. Решение задач идентификации и управления динамическими процессами
- •26. Решение задач ассоциации с помощью инс
- •28. Черты искусственного интеллекта в нейронных сетях.
- •Модели нейронов и методы их обучения
- •29. Персептрон МакКаллока-Питса
- •30. Обучение персептрона. Правило Видроу-Хоффа
- •31. Сигмоидальный нейрон
- •32. Нейрон типа «адалайн»
- •33. Сеть мадалайн
- •34. Инстар и аутстар Гроссберга
- •35. Нейроны типа wta
- •36. Нейронная сеть типа wta и ее обучение
- •37. Проблема мертвых нейронов
- •38. Модель нейрона Хебба
- •39. Коэффициент забывания при обучении по правилу Хебба
- •40. Обучение линейного нейрона по правилу Ойя
- •41. Однонаправленные многослойные сети сигмоидального типа
- •42. Однослойная сеть. Ограниченность возможностей однослойных сетей
- •43. Решение проблемы нелинейного разделения применением двух линейных разделителей
- •44. Структура инс, выполняющей функцию xor
- •45. Многослойный персептрон
- •46. Алгоритм обратного распространения ошибки
- •47. Этапы алгоритма обратного распространения ошибки
- •48. Градиентные алгоритмы обучения сети
- •50. Математические основы теории радиальных инс
- •51. Простейшая нейронная сеть радиального типа
- •49. Радиальная нейронная сеть
- •52. Отличия радиальной инс от сигмоидальной
- •53. Сравнение радиальных и сигмоидальных инс
- •74. Алгоритм нейронного газа
- •75. Сети с самоорганизацией корреляционного типа
- •76. Нейронные сети рса
- •77. Нейронные ica-сети Херольта-Джуттена
- •Литература
- •Свёрточные нейронные сети
- •54. Сверточные нейронные сети (снс), их особенности и структура
- •Слои свёрточной нейронной сети
- •57. Преимущества снс
- •56. Параметры сверточного слоя в снс
- •55. Алгоритмы обучения снс
Слои свёрточной нейронной сети
Свёрточный слой и Слой субдискретизации
Свёрточная нейронная сеть состоит из следующих слоёв – слоя свёртки и субдискретизации.
Слои свёрточной нейронной сети
Свёрточный слой
Содержит ядро свёртки – матрицу весовых коэффицентов, устанавливающихся в процессе обучения. Этот слой выполняет функцию свёртки, обрабатывая с помощью ядра свёртки предыдущий слой по фрагментам и суммируя результаты матричного произведения для каждого фрагмента и выдаёт на выход карту признаков.
Скалярный результат свёртки попадает на нелинейную функцию активации. Часто в качестве функции активации в свёрточных нейронных сетях используют функцию ReLU. · rectifier («выпрямитель», ReLU) 𝐹(𝑥)=𝑚𝑎𝑥(0,𝑥)
Слой субдискретизации (пулинга, подвыборки)
Субдискретизация в свёрточных нейронных сетях это выделение наиболее значимых признаков предыдущего слоя и значитльное сокращение размерности последующих слоёв сети.
Этот слой производит нелинейное уплотнение карты признаков путём нелинейного преобразования, в результате чего группа признаков в матрице (как правило размера 2×2) уплотняется до одного элемента.
Процесс свёртки
+
Обычно свёрточная нейронная сеть состоит из нескольких слоёв свёртки и субдискретизации, за которыми следует слой полносвязной нейронной сети прямого распространения, который является выходным.
Свёрточная нейронная сеть — специальная архитектура искусственных нейронных сетей, предложенная Яном Лекуном и нацеленная на эффективное распознавание образов. Данной архитектуре удаётся гораздо точнее распознавать объекты на изображениях, так как, в отличие от многослойного персептрона, учитывается двухмерная топология изображения. При этом свёрточные сети устойчивы к небольшим смещениям, изменениям масштаба и поворотам объектов на входных изображениях.
Во многом, именно поэтому архитектуры, основанные на свёрточных сетях, до сих пор занимают первые места в соревнованиях по распознаванию образов, как, например, ImageNet.
Почему именно свёрточные сети?
Нейронные сети хороши в распознавании изображений. Причём хорошая точность достигается и обычными сетями прямого распространения, однако, когда речь заходит про обработку изображений с большим числом пикселей, то число параметров для нейронной сети многократно увеличивается. Причём настолько, что время, затрачиваемое на их обучение, становится невообразимо большим.
Так, если требуется работать с цветными изображениями размером 64х64, то для каждого нейрона первого слоя полносвязной сети потребуется 64·64·3 = 12288 параметров, а если сеть должна распознавать изображения 1000х1000, то входных параметров будет уже 3 млн! А помимо входного слоя есть и другие слои, на которых, зачастую, число нейронов превышает количество нейронов на входном слое, из-за чего 3 млн превращаются в триллионы! Такое количество параметров просто невозможно рассчитать быстро ввиду недостаточно больших вычислительных мощностей компьютеров.