
- •Оглавление
- •Искусственные нейронные сети (инс) Строение биологического нейрона
- •Биологический нейрон и его состав.
- •Искусственный нейрон и его состав.
- •Как работают нейросети (почему они могут решать задачи) 2 2 2
- •Синапсы
- •Уровень сложности нейросетей
- •6. Возможности компьютерного моделирования нейронных сетей.
- •7. Скорости обработки информации реализациями инс и мозгом человека
- •Классификация проблем по сложности
- •8. Типы задач, решаемых с помощью искусственных нейронных сетей (инс). Задачи, решаемые с помощью инс
- •12. Преимущества и недостатки нейронных сетей
- •Устойчивость к шумам входных данных
- •Адаптация к изменениям
- •3. Отказоустойчивость
- •Сверхвысокое быстродействие
- •Недостатки нейронных сетей
- •Ответ инс всегда приблизительный
- •Невозможно многошаговое принятие решений
- •27. Решение задачи принятия решения с помощью инс
- •3. Неспособность решать вычислительные задачи
- •3.Разновидности функций активации искусственного нейрона
- •1. Единичная ступенчатая функция
- •Сигмоидальная функция
- •4.Логистическая функция активации и ее преимущества.
- •3. Гиперболический тангенс
- •9. Виды инс
- •10. Инс со свойством кратковременной памяти.
- •60. Искусственные нейронные системы со свойством кратковременной памяти
- •Обучение нейронной сети
- •11. Обучение инс с учителем и без учителя
- •13. Состав персептрона Розенблатта
- •14. Значения выходов сенсоров, r-элементов, s-a и a-r связей в персептроне.
- •5. Нейронная сеть человека и ее оценки.
- •Разновидности персептронов.
- •19. Классификация персептронов
- •16. Отличие однослойного персептрона от искусственного нейрона
- •17. Задачи, решаемые с помощью персептронов.
- •18. Теоремы Розенблатта и условия их выполнения. Теорема Розенблатта.
- •Вторая теорема Розенблатта.
- •20. Линейная разделимость
- •22. Прикладные возможности нейронных сетей
- •23. Решение задач классификации и распознавания образов с помощью инс
- •24. Решение задач прогнозирования с помощью инс
- •25. Решение задач идентификации и управления динамическими процессами
- •26. Решение задач ассоциации с помощью инс
- •28. Черты искусственного интеллекта в нейронных сетях.
- •Модели нейронов и методы их обучения
- •29. Персептрон МакКаллока-Питса
- •30. Обучение персептрона. Правило Видроу-Хоффа
- •31. Сигмоидальный нейрон
- •32. Нейрон типа «адалайн»
- •33. Сеть мадалайн
- •34. Инстар и аутстар Гроссберга
- •35. Нейроны типа wta
- •36. Нейронная сеть типа wta и ее обучение
- •37. Проблема мертвых нейронов
- •38. Модель нейрона Хебба
- •39. Коэффициент забывания при обучении по правилу Хебба
- •40. Обучение линейного нейрона по правилу Ойя
- •41. Однонаправленные многослойные сети сигмоидального типа
- •42. Однослойная сеть. Ограниченность возможностей однослойных сетей
- •43. Решение проблемы нелинейного разделения применением двух линейных разделителей
- •44. Структура инс, выполняющей функцию xor
- •45. Многослойный персептрон
- •46. Алгоритм обратного распространения ошибки
- •47. Этапы алгоритма обратного распространения ошибки
- •48. Градиентные алгоритмы обучения сети
- •50. Математические основы теории радиальных инс
- •51. Простейшая нейронная сеть радиального типа
- •49. Радиальная нейронная сеть
- •52. Отличия радиальной инс от сигмоидальной
- •53. Сравнение радиальных и сигмоидальных инс
- •74. Алгоритм нейронного газа
- •75. Сети с самоорганизацией корреляционного типа
- •76. Нейронные сети рса
- •77. Нейронные ica-сети Херольта-Джуттена
- •Литература
- •Свёрточные нейронные сети
- •54. Сверточные нейронные сети (снс), их особенности и структура
- •Слои свёрточной нейронной сети
- •57. Преимущества снс
- •56. Параметры сверточного слоя в снс
- •55. Алгоритмы обучения снс
24. Решение задач прогнозирования с помощью инс
Прогнозирование
При
решении задач прогнозирования роль
нейронной сети состоит в предсказании
будущей реакции системы по ее
предшествующему поведению. Обладая
информацией о значениях переменной х
в моменты, предшествующие прогнозированию
x(k-1), x(k-2), …,
x(k-N),
сеть вырабатывает решение, каким будет
наиболее вероятное значение
последовательности в текущий момент
k.
Для адаптации весовых коэффициентов сети используются фактическая погрешность прогнозирования ε = x(k)- и значения этой погрешности в предшествующие моменты времени.
25. Решение задач идентификации и управления динамическими процессами
Идентификация
При решении задач идентификации и управления динамическими процессами нейросеть, как правило, выполняет несколько функций.
Она представляет собой нелинейную модель этого процесса, обеспечивающую выработку соответствующего управляющего воздействия.
Сеть также выступает в роли следящей системы, адаптирующейся к изменяющимся условиям окружающей среды.
Очень большое значение, особенно при управлении роботами, имеет функция классификации, реализуемая при выработке решения о дальнейшем развитии процесса.
26. Решение задач ассоциации с помощью инс
Ассоциация
В задачах ассоциации нейронная сеть играет роль ассоциативного запоминающего устройства (ЗУ). Можно выделить ЗУ автоассоциативного типа, с помощью которых определяется корреляция между отдельными компонентами одного и того же входного вектора, и ЗУ гетероассоциативного типа, средствами которых устанавливается корреляция между двумя различными векторами.
Если на вход сети подается неструктурированный вектор (например, содержащий искаженные шумом компоненты или вообще не содержащий отдельные компоненты), нейронная сеть сможет восстановить оригинальный и очищенный от шумов вектор и сгенерировать при этом полную версию ассоциированного с ним вектора.
Параллельная обработка информации
Важнейшее свойство нейронных сетей, свидетельствующее об их огромном потенциале и широких прикладных возможностях, состоит в параллельной обработке информации одновременно всеми нейронами. Благодаря этой способности при большом количестве межнейронных связей достигается значительное ускорение процесса обработки информации. Во многих ситуациях становится возможной обработка сигналов в реальном масштабе времени.
Нечувствительность к ошибкам
Очень большое количество межнейронных соединений приводит к тому, что сеть становится нечувствительной к ошибкам, возникающим в отдельных контактах. Функции поврежденных соединений принимают на себя другие элементы, в результате в деятельности сети не наблюдаются заметные нарушения.
Это свойство используется, в частности, при поиске оптимальной архитектуры нейронной сети путем разрыва отдельных связей. Алгоритм такого поиска, названный “Optimal Brain Damage”, является прекрасной иллюстрацией этого свойства нейронной сети.
28. Черты искусственного интеллекта в нейронных сетях.
Способность к обучению и к обобщению полученных знаний
Сеть обладает чертами искусственного интеллекта. Натренированная на ограниченном множестве обучающих выборок, она обобщает накопленную информацию и вырабатывает ожидаемую реакцию применительно к данным, не обрабатывавшимся в процессе обучения.
Несмотря на значительное количество уже известных практических приложений искусственных нейронных сетей, возможности их дальнейшего использования для обработки сигналов не изучены окончательно, и можно высказать предположение, что нейронные сети еще в течение многих лет будут средством развития информационной техники.